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PREFACE 

These notes grew out of a Columbia seminar on Grothendieck's 

~ourbaki talk [6] on duality and his SGA talks [9] on flat, ~tale, 

and smooth morphisms. They are intended as a second course in algebraic 

geometry and assume only a general familiarity with schemes including 

Serre's theorems on the cohomology of projective space. The central 

result follows: 

Theorem. Let k be a field and X a projective k-scheme of 

pure dimension r. Then there exist uniquely a coherent Ox-MOdule w x 

and a "residue'map ~X: Hr(x'Wx) )k such that, for any coherent 

Ox-MOdule F and integer p, there exists a canonical pairing 

Hp(X,F) × Ext[-p Hr(x ~x (F,Wx) ~ ,Wx) = )k 
u x 

which is always nonsingular for p = r and is nonsingular for all p 

if and only if X is Cohen-Macaulay. Furthermore, if X is a closed 

subscheme of P =~, then WX= Ext~k(Ox,Op(-n-l))! if X is smooth 
P 

over k, then WX= r ~X/k ! and if X is a smooth curve, then ~X is 

defined by the classical residue symbol. 

The material divides naturally into four parts. The first part, 

(Chapter I), presupposing the others, discusses w x. The second, 

(Chapters II, III, IV), first develops preliminaries of commutative 

and homological algebra~ it then establishes the duality theorems. 

The third part, (Chapters V, VI, VII), studies smooth morphisms aiming 

for general familiarity. CLacking notably, however, is a proof of 

Zariski's Main Theorem and application to the branch locus of covers 

of normal schemes~. Finally, the last part, (Chapter VIII), 
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treating curves, gives the traditional construction of ~X and proof 

of duality, and, using Tate's elegant approach [13], it proves ~X 

arises from residues. 

Allen Altman 

Steven Kleiman 

New York, 1968 



Chapter I - Study of mX 

I. Main Duality Results 

(i.i} Yoneda pairinq (IV,l). - Let X be a ringed space and 

two Ox-MOdules. Then there exists a b-functorial pairing 

HP(x.F) x EXt[-P(F,~) ~Hr(X,w) 

F,w 

for all integers r,p. Furthermore, if F 

rank, the pairing becomes: 

is locally free of finite 

HP(x,F) x Hr-P(x,w~ v) " )Hr(x,w). 

(1.2) Serre duality (IV,4) - Let k be a field, P = ~n 
. k ~ 

projective n-space over k, F a coherent Op-MOdule and wp = Op(-n-l). 

If Rp : Hn(p,Wp) )k is a fixed isomorphism, then the Yoneda 

pairing, composed with qp, defines a b-functorial pairing which 

is nonsingular, or, equivalently, the corresponding map 

E x t , 3  P (F ,Wp) ........ >HP  ( P , F )  * 

is an isomorphism of O-functors. 

(1.3) Grothendieck duality (IV,5). - Let k be a field, 

~n projective n-space over k, and X a closed subscheme of P = k ) 

of pure dimension r. Let F be a coherent Ox-MOdule, 

Wp = Op(-n-i) and WX = ~pr (Ox,~ap) " Then an isomorphism 

n p : Hn(P,~p) )k defines-a map DX : Hr(X'Wx) 

with the Yoneda pairing, yields a pairing 

×  Xt0xP F, x  , k .  

For p = r, this pairing is always nonsingular. 

....... >k, which, composed 

For r - s ~< p ~< r, 
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it is nonsingular if and only if EXto~P(Ox,~ P) = O. In particular, 

it is nonsingular for all p if and only if X is Cohen-Macaulay 

(e.g., X regular or, more generally, locally a complete intersection 

in P) . 

r 
Furthermore, (I,4.6) , if X is smooth over k, then ~X = ~X/k' 

and (VIII,4.4) , if X is a smooth curve, then ~X is defined by 

the classical residue symbol. 

2. Further discussion of ~X 

Proposition (2.1). - Under the conditions of (1.3) , the pair 

(~X,~X) is a character of X, uniquely determined up to unique 

isomorphism. 

Proof. The assertion results formally from the following lemma. 

Lemma (2,2). - Under the conditions of (1.3), for any map 

: Hr(X,F) - ~k, there exists a unique map f : F---+~ X making the 

following diagram commute: 

Hr (X ,~-) HK (~X_t f_]_. ~ Hr (X ,<nX) 
\ / 

\ \ \  , / /  
"N / / 
\ / nx 

k 

Proof. The assertion results immediately from (1.3). 

Proposition ' (2.3). - Let P be a regular k-scheme of pure 

dimension n and Y (resp. X) , a closed subscheme of P (resp. Y) of 
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pure dimension s (resp. r). Let Wp he an invertible sheaf on P, 

n-r w n-s w x = E~p (Ox, p) and Wy = EXtOp (Oy,Wp) . If Y is Cohen-Macaulay, 

s-r (Ox, Wy) . then w X = E_~y 

Proof. By (111,5.22) and (IV,5.1) , EXt~p(Oy,Wp) = O for 

q ~ n-s; so, the spectral sequence (IV,2.9.2) 

E X t P y ( O X ' ~ ) p ( O y ' W P ) ) m = ~ E x t P + q ( O ' u p  2% ,w~) 

degenerates and yields a canonical isomorphism 

EXtoyr (Ox,Wy) ~ )EXtopn-r {Ox,Wp ) . 

Proposition (2.4). - Let X be a scheme and D an effective 

divisor, considered as a closed subscheme of X. Let w X be an 

Ox-MOdule and  w D = ~ (OD,Wx). Then  t h e r e  e x i s t s  a n a t u r a l  
X 

isomorphism 

0DeOx fOx (D) •OxWX ) ' D" 

In particular, if w X is locally free, then w D is locally free. 

Proof. The exact sequence (VII,3.6) 

0 >Ox(-D) JO E ~0 D " '>0 

yields the diagram 

~X 

J 

J 

HOmox ( 0 x , w x ) ,WX ) > HOmox (O x (-D) ~EXtOx (O D ,~X ) 

~, Ox(D)®OxWX -- > OD(DOx(OX(D) (90xWX), -->0 

~O 
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whence, the assertion. 

Remark (2.5). - Under the conditions of (1.3), if X is smooth, 

Ox(D)~oC X may be interpreted as the sheaf of differentials on X 

with poles only along D (the order bounded by D). The homomorphism 

Ox(D)®Ox~X----eWD is often called the po%Dcar~ residue map. 

Corollar V (2.6). - Let P be a scheme, X a closed subscheme 

and Wp a locally free Op-MOdule. If X is regularly immersed in 

n-r(Ox,Wp) is locally free. P of pure codimension n-r, then w x = ~ p  

Proof. Since the assertion is local, we may assume X is "cut 

out" by a regular sequence of elements fl ..... fn-rCF(P'OP )" Let 

D i be the closed subscheme of Di_ I "cut out" by fi" Then D i is 

a divisor on Di_ I and the assertion follows from (2.4) 

Proposition (2.7). - Let P be a regular scheme, X a closed 

subscheme of pure codimension n-r, Wp an invertible sheaf on P 

and w X = Ext~Dr(Ox,Wp). Suppose X is generically reduced. Then 

there exists an open dense subset U of X such that wxlU is 

locally free of rank I. 

Proof. If J is the ideal defining X, then, at any generic 

point x of X, Jx = mx" So, since Op, x is regular of dimension 

n-r, J is generated by n-r elements on an open set U about x. 

The assertion now follows from (III,4.5 and 4.12) and (2.4). 

Proposition .(2-8)- - Under the conditions of (1.3) , if X is 

reduced, then w x is torsion free of rank I. 

Proof. Let ~ be the sheaf of rational functions on X and 
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f 
define F by O--)F >w --~w ~ F~.. By (2.7) there exists an 

X A UXX 

open dense subset U on which w x is invertible. Then 

Supp (F) ¢ X- U, so dim (Supp (F)) < r. Therefore, ~(X,F) = O~ 

so, by (1.3) , HOmo. (F,w x) = O. Hence, f = O and F = O. 

Lemma (2.9). - Under the conditions of (1.3), let ~l,...,Xp be 

the irreducible components of X and x i the generic point of X i. 

Then the canonical map 

is injective. 

H°mOX (F 'WX) ~ ~ H°mox .,x, (Fx'1 'Wx'x'l ) 
1 1 

Proof. Let f : F ........ ~w x be a homomorphism such that the maps 

fx. : Fx. ~WX,x. are all zero, and let G = Im(f). Since x i ~ Supp(G), 
1 1 1 

dim(Supp(G)) < r. Hence, Hr(X,G) = O! so by (1.3) , HOmox(G,Wx) = O. 

Since G L--~w X, it follows that G = O! whence, the assertion. 

Proposition (2.1Q). - Under the conditions of (1.3), suppose 

that X is integral and that k is algebraically closed in the 

function field K of X Then DX is an isomorphism. 

Proof. If x is the generic point of X, then K = OX, x. Hence 

by (2.9), and (2.7), the canonical map 

A = HOmoX(WX,W X) >HOmK(K,K) = K 

is injective. However, by (IV,3.2) , A is a finite dimensional 

k-algebra. Thus A = k and, by (1.3) , Hr(X,w X) = k~ whence, the 

assertion. 
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3. Differentials on Projective Space. 

U 
Let S be a scheme, X an S-scheme and O ~E' ~E ~E" >O 

a locally split, exact sequence of quasi-coherent Ox-MOdules. Let 

Z = ~/(E) (=Spec(S(E))) , Y = %/(E") and J = ker(S(u)). Then J is 

the Oz-ideal defining the closed immersion Y~ > Z. The map 

I 
6 : ~/~2 >~Z/S~OzOy, defined by dz/S , induces a map 

I 
j/j2- ,~f,(nZ/S)~S(E)S(E") , where f : Z ~X is the structure map~ 

1 
hence, a map a" : E' ~f,(nZ/S)~S(E)S(E ). 

= F where F is a quasi-coherent Os-MOdule As sume E OX~Os 

and let V = ~/(F) . Then Z = XXsV~ so, by (VI,I.12) , 

~1 _ 1 
Z/S-(~X/S®OsOV)~(OX~Os~Vl/S ) and dz/S = (dx/s~idv)+(idx~dv/s). The 

map a", followed by projection on the first factor, yields a map 

E' ~f,(f*~ /S)~S(E)S(E"). If ~X/S is locally free of finite rank, 

I I 
the canonical map ~X/S~OxS(E ) )f*f*~x/s is an isomorphism! so, the 

I 
above map becomes ~' : E' )nX/S®OxS(E)~s(E)S(E") 

To compute a' locally, assume S and X are affine and let 

! 
= Za i~ t. ~ F(X,E') where a. ~ F(X,Ox) and t. ~ F(S,F). e 

~S I l 1 

Then a'(e') = 7daiOOx(1OOsti)eS(E)1 =Zdai~oxU(leti) where 

I 
~X/S E" . Thus e ' u : E ~E"| so, a'(e') is a global section of ~Ox 

induces a map 

: E' /S X 

called the second fundamental form of E' in E. 
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Theorem (3.1). - Let S be a scheme, F a locally free 

Os-MOdule of finite rank and P = ~(F). Let p : P ~S be the 

structure map and u : p*F-->Op(i), the canonical surjeetion. Then 

the second fundamental form of Ker(u) in p*F gives rise to an 

exact sequence 

1 
O .... ~ np/S(1) -->p*F - u > Op(1) >O. 

n n 1 
Furthermore, if F is free of rank n+l, then DP/S = A ~P/S 

canonically isomorphic to Op(-n-l). 

is 

Proof. Let E ° = ker(u) ~ we prove that ~ : E' ~Dp/s(1)I is 

1 
an isomorphism. Note that by (VII,5.1) , ~P/S is locally free of 

finite rank~ hence, a is defined. We may work locally and so assume 

S is affine with ring A and P = Proj (AlTo,.. " Tn]) where the T i 

are indeterminates. Consider the open affine U = D+(Tj) of P 

whose ring is B = A ,..., n . If F = Oseo~...~K)se n, then 

T. 
-- r(u,o~ (i)). u(ei) = ~?. Tj • BT 3 

3 

Hence, F(U,E') is the free 

T, 

B-module with basis e v 1 =-~. ej e i , 
3 /\ 

T[~l I U 1 (1)), 
by ~(e[) = d ~ T 3 ~ F( '~P/S 

\ J/ 

elements d ~ Tj(i / j) form a basis of r(U,~p/S(1)) , a is an 

isomorphism. The last assertion now follows easily from (VII,3.12). 

i ~ j. The form ~ is given 

since, by (VI,I.4) , the 
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4. The Fundamental Local Isomorphism 

Definition (4.1). - Let A be a ring and x i .... ,Xr~ A. The 

Koszul complex K,(x) determined by (x) = (x i ..... Xr) is defined 
r 

as follows: Kp(X_) = AP(i~_ i Aei) for O ~< p ~< r and Kp(X) = 0 

otherwise. The boundary map dp: Kp(X_) )Kp_i(x) is defined by 

dp (eli^" " "^eip) = Z (-I)Jx'xj e.li^... A8 .lj ̂... ̂ e .ip 

Lemma (4.2). - Let A be a ring, (x i ..... x r) an A-regular 

sequence, I = xlA+...+XrA, and M an A-module. Then K, (x{M) = 

= K,(X)@AM is a resolution of M/IM. 

Proof. Note that K,(x_~M) is the (single) complex associated 

to the double complex K p'q = K ((x I ..... Xr_l) ;M)~Kq(Xr). Further, 
P 

we may assume by induction on r that IIEPl 'q = H p(K* ,q) = O for 

(p,q) / (0,0) or (0,i) and Ii E0'q = M/I'M for q = 0,i where 

I' is the ideal generated by xi,...,Xr_ I. By assumption, 

~P'q = O for (p,q) ~ (0,0) Xr: M/I'M ......... ~M/I'M is injective| so II-2 

and IIE20,O = M/IM. Since ii Ep'q ~HP+q(K,(x~M))_ , K,(X|M)_ is a 

resolution of M/IM. 

Lemma (4.3). - Let A be a ring, M an A-nlodule and xl,...x r cA. 

Set K*(x_{M) = HOmA(K,(x ) ;S) and HP(x~M) = HP(K*(x~M)) and define 

.. . ' induces an ~x' : Kr(x;M)- ~M by ~x(a) = a(ei^. ^er) Then ~x 

isomorphism 

~x " Hr(x-'m ~ ~M/IM 

where I is the ideal generated by xl,... ,x r. 

'(d(b)) ~ IM for each b ~ Kr-i(x~M)! thus, Proof. Note that ~x 
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~ induces the required map ~x" It is clearly surjective. Suppose 

~(a) = O. Then a(el^...^er) = Zxjyj for suitable yj ~ M. Define 

b : Ar-l(Ar) ~M by b(elA...A~.^...^e r) = (-l)3yj. Clearly, 
3 

d(b) = a and, hence, ~x is injective. 

Lemma (4.4~. - Let A be a ring, M an A-module and I an 

ideal of A. Let (x I , .... x r) and (Yl ..... Yr ) be two A-regular 

sequences which generate I and let y = Zc .x. where c..E A. 
13 J i j  

Then there exists a commutative diagram 

M 

Ext X (A/I, M) 

:IM 

det (cij) 

:IM 

Proof. Since (x_) and ([) are A-regular, Ext X(A/I,M) = 

= Hr(xsM) = Hr(_y;M) by (4.3). Furthermore, Ac : K,(V) ,K,(x) is 

a 0-isomorphism. Since Arc = det(cij) , the commutativity results from 

the definitions. 

Theorem (4.5). - Let P be a scheme, X a closed subscheme, J 

its sheaf of ideals and F a quasi-coherent Ox-MOdule. Suppose X 

is regularly immersed in P. Then there exists a natural isomorphism 

: ~ p  (O X,F) ~, HOmoX(Ar (j/j2) ,F/JF) 

where r = codim(X,P). 

Proof. Let U be an affine open set of P on which J is a 

regular ideal~ let A be the ring of U, M = F(U,F) and I = F(U,J). 



- 14 - 

Then I is generated by an A-regular sequence (x I ..... Xr) and 

I/I 2 is free of rank r over A/I by (III,3.4) ~ hence, the exterior 

product Xi,A...AX~ of the residue classes x!1 generates Ar(I/I 2) 

and we may define 

: Ext~(A/I,M) >HOmA/i(Ar(I/I2) ,M/IM) by 

@(a) (xl^...AX r) = @x(a). 

If (Yl ..... Yr ) is another A-regular sequence that generates 

I, then there exist cije A such that Yi = Ecijx'" Then 
3 

yl ̂ . ..Ay r = det(cij)xI^...^Xr and, by (4.4), ~(a) (yl A. . .^yr ) = 

= det(cij)~(a)(XlA...AXr) = det(eij)~5(a ) = ey(a). Hence, ~ is 

independent of choice of generators of I and, by (IV,3.2), 

defines a global isomorphism. 

Theorem (4.6). - Let P be an S-scheme and X a closed sub- 

scheme. Suppose X and P are smooth over S of relative 

dimensions n and r. Then 

r n 

nx/s = ~xt (0x,~p/s) 

n 
In particular, if P =~S and WX = ~pr(Ox,Op(_n_l)) , then 

r 
~X = ~X/S " 

Proof. By (VII,5.13), X is regularly immersed in P. Hence, 

n-r n n 
by (4.5) and (IV,3.4) , EXtOp (Ox,~P/S) = H OmoX(An-r(j/j2 ) ,np/S~OpOX)= 

(An-r (j/j2) v pnp/S = ) G 0 where J is the sheaf of ideals of X in 

I i 
P. Now, by (VII,5.8) , the sequence 0 --~ j/j2 _~ Qp/S~OpOX__) nX/S -->O 

r v n 
is exact. Therefore, by (VII,3.12), nX/S = (An-r(j/j2)) ®OpnP/S ; 

whence the first assertion. The second now results from assertion 

( 3 . 1 )  . 



Chapter II - Completions, 

Primary Decomposition and Length 

i. Completions 

Definition (l.l). - Let A be a ring. A family of ideals (An) , 

n ~ ~ , is said to form a (descending) filtration of A , if A = A, 
o 

c Let M be an A-module. A family of An+ I ¢ A n and AnA m An+ m 

submodules (Mn) is said to form a (compatible) filtration if 

M O = M , Mn+ I c M n and AmM n c %+n " The filtration (M n) is said 

to be separated if N M n = 0 . Let q be an ideal of A . The q-adic 

f~itration of A is defined by An = qn ~ the g-adic filtration of 

M is defined by M n = qnM . 

Remark (1.2). - If A is a filtered ring, the sets A form a 
n 

system of neighborhoods of O for a topology on A which is compat- 

ible with the ring structure of A ° Similarly, if M is a compat- 

ibly filtered A-module, the sets M form a system of neighborhoods 
n 

of 0 for a topology on M , which is compatible with the topology 

on A . 

Definition (1.3). - A ring A is said to be graded if there ex- 

ists a family of subgroups (An) such that A = ~ A n and 

AreA n c Am+ n An A-module M is said to be (compatibly) 

graded if there exists a family of subgroups (M n) such that 

M = ~ M n and Atom n c Mm+ n 

Remark (1.4). - Let A be a filtered ring and M a compatibly 

filtered A-module. Let grn(A) = An/An+ I , and grn(M) = Mn/Mn+ I . 

Then gr*(A) = ~grn(A) is called the associated qraded ring and 

gr*(M) = ~grn(M) the associated graded gr*(A)-module. If A and M 
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are filtered by the q-adic filtration, we also write 

gr*(A) and gr~(M) for gr*(M). 

grq (A) for 

Lemma (!.5). - Let A be a filtered ring and u : M >N a 

homomorphism of filtered A-modules~(u(Mr) CNr). Suppose NMr= O. If gr*(u) 

is injective, then u is injective. 

Proof. Since gr*(u) is injective for each r, 

M r,~u-l(Nr+l) c Mr+ I. It follows by induction that 

-1 
Mr_k~ u (Nr+l) c Mr+ 1 for each r and each k ~ O~ in particular, 

for k = r, u-l(Nr+l ) c Mr+ 1. Therefore, u-l(o) c Nu-l(Nr ) c NM r = O. 

Definiti0n (1.6). - Let A be a ring• A collection of 

fi+l A-modules {M i} and A-homomorphisms i : Mi+I----~M i , i ~ O, is 

said to be a projective system of A-modules indexed by ~. The 

projective (or inverse) limit of {Mi,fi+l}, i - denoted ~im M i, is an 

A-module M together with maps fi : M ,M i such that 

fi+l i o fi+l = fi for all i satisfying the following universal 

propertyt 

If M' is an A-module together with maps gi: M'-~ Mi such that 

fi+l i °gi+l = gi for all i, then there exists a unique map 

g : M' )M such that gi = fiog. 

Proposition (1.7) (i) Let {M i .i+l. • - 'ri ) be a projective system 

of A-modules indexed by ~. Then the projective limit exists. 

(ii) Let N be a filtered A-module with filtration (Nn). 

Then the projective limit )im N/N n is the topological, separated 

completion N, (namely, the set of Cauchy sequences of elements of N 

modulo the following equivalence relation: {Xn]'~ {Y n} if, for each 
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m ~ ~, there exists an n o such that x n- yn ~ M m for all n ~ no). 

Proof. To prove (i) , let P = ~M. and let M c P be the sub- 
1 

~i+l, 
module consisting of elements (x i) ~ P such that r i (Xi+l) = x i- 

Let fi: M )M i be the projection Pi: P )M. restricted to M. 
1 

.i+1 
Clearly, r i °ri+l = fi" Now, let M t be given together with maps gi" 

By definition of P, there exists a unique map g : M t )P such that 

.i+1 
gi = pig. Since ri °gi+l= gi' it follows that g(M t) c M. Hence, 

i+1 
M is the projective limit of {Mi,f i }. 

To prove (ii), let ~ = ~im N/Nn, x' e N, x' = (x~). For 

each n, choose x e N representing x'. If m ~ n, then 
n n 

x n~ Xm mod Nn, so (Xn) is a Cauchy sequence in N. If yn e Nn 

also represents x' then Yn- x e N for each n! so, x'l )(Xn) 
n' n n 

is a well-defined map N )N. If (x n) = O, then (Xn) )O in N~ 

N for all n and that x' = O. Finally, it follows that x n n 

given a Cauchy sequence (yn) , inductively choose a subsequence (Xn) 

N for each n. Let x' ~ N be the residue such that Xn+l- Xn n m m 

class of x m . Then (x~)~---->(ym) . 

Remark (1.8). - If an A-module M has two filtrations (Mn) 

and (M~) such that for each n there exists an m such that 

M nC M'm and for each m' there exists an n' such that M'm, c Mnt 

then both filtrations induce the same topology on M~ hence, by (1.7) , 

the separated completions are equal. 

In particular, let q and q' be ideals of A such that 

q' c q and qn¢ q, for some n. Then the q-adic and the q'-adic 

topologies on A and M are the same, so the corresponding 

separated completions coincide. 
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Lemma (1.9), - Let 

0 
f 
n 

>A 
n 

0 > An+ 1 

n+l 
n 

gn 
>B ~ C 20 

n n 

i vr~+l n+l 
:~ n 

Bn+ 1 > Cn+--~---~ 0 

be a projective system of exact sequences of abelian groups. Then: 

(i) The sequence 

f > ~im B n g ~.~im C n O --> ~ im A n 

is exact. 

n+l 
(ii) If u 

n 
is surjective for each n ~ I, then g is sur- 

jective. 

Proof. The first assertion follows immediately from (1.7,(i)). 

Given c ~ ~im C n, take b'n ~ Bn such that gn(b~) = Cn. Construct 

b ~ ~ B n such that g(b) = c inductively as follows: Let bo= b6; 

given b n such that V~_l(bn) = bn_l, and gn(bn) = c n, note that 

n+l(b~+l)-b n) = O. Hence, there exists a ~ A such that gn%Vn n n 

n+l- w 
fn(an) = v n (bn+1)-b n. By hypothesis, there exists an+l~ An+ 1 

n+1, , . Let b' - such that u n ~an+l) = an bn+l = n+l fn+l(an+l )" Then 

b ~ ~im B n and g(b) = c. 

Proposition (1.10). - Let A be a filtered ring and M a 

filtered A-module. Then M/Mn= M/Mn and, hence, gr(M) = gr(M). 

Proof. For a fixed integer n, the filtration (M m) induces 

filtrations (MnN M m) of M n and (Mn+ Mm/M n) on M/M n. By (1.9), 
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the sequence O ~M n CM ---e(M/Mn)^ )O is exact. However, since 

M/M n is discrete, it follows that M/M n is itself complete. 

Definition ~.11). - Let A be a noetherian ring, q an 

ideal, of A and M a finite A-module, A filtration (M n) is said 

to be ~-qQod if there exists a positive integer n o such that for 

each n ~ n o , Mn+k= qkM n for all k ~ O. 

Proposition (1.12). - Let A be a noetherian ring, q an 

ideal of A and M a filtered A-module of finite type. The 

following conditions on the filtration (M n) are equivalent: 

(i) The filtration (M n) is q-good 

(ii) There exists an integer n O such that Mn+l = qM n for all n 9 n O . 

*(A)-module of finite type. (iii) gr(M) is a grq 

Proof. The equivalence of (i) and (ii) is trivial. If (i) 
n O 

holds, then gr(M) is generated by ~ M over gr(A) ~ since M 
m=O n 

is of finite type over A, it follows that gr(M) is of finite type 

over gr~(A). If (iii) holds, let x I ..... x m be homogeneous genera- 

tors of gr(M). Then, clearly, for n ~ sup{deg(xi) }, we have 

Mn+l = qM n • 

Remark (I.13). - Let A be a ring and q an ideal of A. 

Suppose A/q is noetherian and q is finitely generated. Then 

gr~(A) is a finitely generated (A/q)-algebra, hence, gr~(A) is 

noetherian. 

Theorem (1.14) (Artin-Rees). - Let A be a noetherian ring, 

q an ideal of A, M an A-module of finite type and N a submodule 

of M. Then the filtration induced on N by the q-adic filtration 

of M is q-good~ ~.~., there exists an integer n O such that for 
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k~> O 

NNqn+kM = qk(NDqnM) for all k ~ O. 

Proof. The map NNqnM/NDqn+IM > qnM/qn+IM is injective~ 

hence, gr(N) ...... ~gr(M) is injective. Since gr(M) is of finite type 

by (1.12) and gr(A) is noetherian by (1.13), gr(N) is of finite 

type and the assertion follows from (1.12). 

Theorem (1,15) (Krull intersection theorem~ Let A be a noetherian 

ring, q an ideal of A and M a finite A-module. Then x ~ DqnM 

if and only if there exists d ~ q such that dx = x. In particular, 

NqnM = O (or equivalently, M >M is injective ) if and only if, 

whenever dx = x where d E q and x ~ M, then x = O. 

Proof. Let N = [lqnM. By (1.14), there exists an integer k 

such that qnMDN = qn-k(qkMNN) for n > k~ hence, qN = N. Now, the 

assertion follows from the next lemma. 

Lemma (1.16). - Let A be a ring, N a finite A-module and q 

an ideal of A. Then N = qN if ~nd only if there exists d ~ q 

such that (l-d)N = O. 

Proof. Let Xl, .... x s generate N. If N = qN, then there 

exist a..~ q such that x.= Za..x.. If l-d = detll6..-a..ll, then 
z ]  z 13 3 13 13 

d ~ q a n d  ( l - d ) x i :  O, 1 ~ i ~ s .  The c o n v e r s e  i s  t r i v i a l .  

P r o p o s i t i o n  ( I . 1 7 ) .  - L e t  A be  a n o e t h e r i a n  r i n g ,  q an 

i d e a l  o f  A and  M a f i n i t e  A - m o d u l e .  Then  t h e  a d d i t i v e  f u n c t o r  

M! ~M : ~ i m  M/qnM i s  e x a c t .  

P r o o f .  e x a c t  s e q u e n c e  o f  o f  A - m o d u l e s  

0 2 M I >M --> M" >0 
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induces an exact sequence 

0 ~M'/(M' oqnM) , M/qnM ~M"/qnM '' , O 

for each positive integer n. By the Artin-Rees lemma (1.14) and by 

(1.8), the separated completion of {M'/M'NqnM) is (M')~ The 

conclusion now follows from (1.9). 

T~.eorem .(I~!8 ) . - Let A be a noetherian ring, q an ideal of 

A and M a finite A-module. Then the canonical map M~AA---9~ is 

an isomorphism. 

Proof. By (I.17), an exact sequence 

A i ,, ) A j ~ M --> 0 

yields a commutative diagram with exact rows. 

• , ' ~  A 

~3 oA A ~ M~AA --> 0 

> > o .  

Since f and g are clearly isomorphisms, the five lemma implies 

that h is an isomorphism. 

proposition (1.19). - Let A be a noetherian ring, q and 

I ideals of A and M a finite A-module. Filter A and M 

q-adically. Then, I = (IM) = IM and, hence, I = (M/IM) 

. . . .  n^ grq(M)- particular, M/qnM = M/qnM = M/q M, and grq(M) = - gr~(M). 

Proof. Consider the commutative diagram 

In 
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IMGA A w > 

By (i.18) , u is an isomorphism, so the image of v is IM. On the 

other hand, by (i.17) and (i.18) , w is an injection with image (IM) 

so the image of v is (IM) ̂  Consequently, IA = ~ and 

IM = IAM = IM! whence, by (1.17) , the first assertion. The second 

assertion now follows from (i.lO). 

Lemma (1.20). - Let A be a noetherian ring and B a 

noetherian A-algebra. Let q be an ideal of A and q' an ideal 

of B such that qB c q' c rad(B). Let M be a finite A-module 

and N a finite B-module. Filter A and M q-adically~ B and N 

q'-adically. Let ~ : M )N be an A-homomorphism and consider the 

commutative diagram that @ induces: 

M/qM ~" ~ N/qN 

a 

, 

Then: 

(i) If $ is surjective, then ~ is bijective and @" is surjective. 

(ii) If ~ and ~" are surjective, then $ is surjective. 

^ 

Proof. If @ is surjective, then 9' is surjective~ so ~ is 

sur3ective. Since q' c rad(B) , it follows from (1.15) and (1.19) 

that ~ is injective, whence, (i). 
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If ~ and @" are surjective, then ~' is surjective. Hence, 

^, n^, qn+l 
= $(M) + qN. So, qn~ = ~q M, + N for all n ~ O, and we are 

reduced to proving the following lemma. 

L emma (1.21). - Let A be a ring and u : M }N a homomorphism 

of filtered A-modules. Suppose M is complete, N is separated and 

gr*(u) is surjective. Then u is surjective and N is complete. 

Proof. Let r be an integer and let y ~ N . We shall con- 
r 

struct a sequence (x k) of elements of M r such that 

Xk+l ~ x k mod Mr+ k and U(Xk) ~ y mod Nr+ k. Let Xo= O. Suppose x k 

has been constructed. Then U(Xk) ~ y mod Nr+k; so, by hypothesis, 

there exists tk~ Mr+ k such that u(tk) ~ U(Xk)-y mod Nr+k+ I. Let 

Xk+l = x k- t k and x be a limit of the Cauchy sequence (Xk). Since 

M r is closed, x ~ Mr, and, since N is separated, u(x) = lim u(x k) 

is equal to y. Therefore, U(Mr) = Nr: hence, u is surjective 

and the topology on N is the quotient of the topology on M. 

Proposition (1.22). - Let A be a ring and q an ideal of A. 

Suppose A/q is noetherian and q is finitely generated. Then 

= ~ A/q r~ is noetherian. 

^ *(A)= grq(A) Proof. Let I be an ideal of A. By (I.19) , grq 

* I) is finitely generated. Let x I, ,x s be hence by (i.13) , grq( ... 
r. 

elements of I whose images x. I ~ I(A) generate *(I). Filter l grq grq 
s 

= I~i A - 
E = ~s by E r "= r-ri Then gr*(E) = gr* (A) S Define u : E ~I 

by u((ai)) = Zaix''l Then gr(u) is surjective; so, by (1.2i) , I is 

finitely generated. 

Lemma (1.23).- Let A be a ring. q an ideal of A, A = ~im A/q n 
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A 

and q = lim q/qn . Then qA c q c rad(A) 

A n 
Proof. Suppose x ~ q . Then x n ~ q , so Xx n converges. 

^ 

Hence, for all x • q , I/(l-x) = Zx n ~ A . Therefore q c rad(A) 

Proposition (1.24). Let A be a ring and q an ideal of A . 

The map m~ m induces a bijection from the set of maximal ideals of 

A containing q to the set of all maximal ideals of A . Hence, if 

A is local (resp. semi-local), then A is local (resp. semi-local). 

A A 

Proof. By (I.iO), A/q = A/q . Hence, the assertion results from 

(1.23). 

2. Support of a sheaf 

Definition (2-I). - Let X be a ringed space and F an O X- 

Module. The set of points x ~ X such that F / O is called the 
x 

support of F and is denoted Supp(F). If A is a ring and M is 

an A-module, the support of M , denoted Supp(M) , is defined as 

Supp(M) c X = Spec(A). 

Remark (2.2). - Let X be a ringed space and 

O--~F' -->F--~F"--->O an exact sequence of Ox-MOdules. Then, clearly, 

Supp(F) = Supp(F') u Supp(F"). 

Proposition (2.~ . - Let X be a local ringed space and F,F' 

Ox-MOdules of finite type. Then Supp(F) is closed in X and 

Supp(F ~ F') = Supp(F') N Supp(F) 

Proof. Since the support of a section is closed and F is of 

finite type, Supp(F) is closed. The second assertion results from 

the following lemma. 
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Lemma (2.4). - Let A be a local ring and M,N two nonzero 

A-modules of finite type. Then M~AN is nonzero. 

Proof. Let m be the maximal ideal of A. Then, by 

Nakayamats lemma, M/mM and N/mN are nonzero vector spaces over the 

field A/m; hence, their tensor product 

(M/raM) ~ A/m(N/mN) = (M ® A N ) ~ AA/m 

is nonzero. 

Proposition (2.5). - Let X be a scheme, F a quasi-coherent 

Ox-MOdule of finite type and J the annihilator of F. Then Supp(F) 

is the underlying point-set of the subscheme V(J) defined by J. 

Proof. We may assume X is affine with ring A and F = 

where M is an A-module of finite type. Let x I , .... x m be generators 

of M and I i the annihilator of x i. Then V(J) = UV(Ii). On the 

other hand, Supp(M) = USupp(Axi) = USupp(A/Ii) and it is clear that 

Supp(A/I i) = V(li) , whence the assertion. 

Corollary 12~,6). - Let X be a scheme, J a sheaf of ideals 

and F a quasi-coherent Ox-MOdule of finite type. Then Supp(F/JF) = 

= Supp(F) N V(J). 

Lemma (2.7). - Let f .- X )Y be a morphism of schemes and F 

an Ox-MOdule of finite type. Then Supp(f*F) = f-l(supp(F)). 

Proof. If x ~ Supp(f*F), then Ff(x)~Of(x)Ox~ O and 

x ~ f-l(Supp(F)). Since Of(x) >O x is a local homomorphism, 

Ox/mf(x)Ox~ O, so, if Ff(x) ~ O, then, by (2.4), Ff(x)® 0 0./ O 
f(x) ^ 

and x ~ Supp(f*F) . 
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Proposition (2.8) (W@ak Nullstellensatz). - Let A be a ring, 

M a finite A-module and f ~ A. Then the homothety f : M > M 

is nilpotent if and only if f lies in every prime of Supp(M). In 

particular, the nilradical of A (i.e., the set of all nilpotent 

elements of A) is the intersection of all (minimal) primes of A. 

Proof. The homothety f : M ~M is nilpotent if and only if 

Mf= O~ hence, if and only if ~ = Supp(Mf) = Supp(M) N D(f) where 

D(f) is the set of primes not containing f. 

3. Primary decomposition 

Definition (3.1). - Let A be a ring and M an A-module. A 

prime ideal p of A is said to be associated to M if there exists 

an element x £ M such that p is the annihilator of x. Let Ass(M) 

or ASSA(M) denote the set of associated primes of M and let Ann(x) 

denote the annihilator of x. If I is an ideal of A, the primes of 

Ass(A/I) are called the essential primes of I. If X is a scheme 

and F is an Ox-MOdule, then Ass(F) is defined as the set of points 

x ~ X such that mx~ AsS(Fx). 

Remark (3.2). - Let A be a ring and M an A-module. It is 

clear that a prime p of A is associated to M if and only if 

there exists an injection A/p ~M. In particular, if N is a sub- 

module of M, then Ass(N) ¢ Ass(M). Furthermore, Ass(A/p) contains 

only the prime p and p = Ann(x) for all nonzero x ~ A/p. 

P r0position (3.3). - Let A be a noetherian ring and M an 

A-module. Then M = O if (and only if) Ass(M) = ~. 

Proof. If M ~ O, let I be an ideal of A which is maximal 

among ideals of the form Ann(x) for nonzero elements x of M. 

Since x ~ O, I ~ A. Suppose b ,c ~ A, bc ~ I. If cx ~ O, then 
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b ~ Ann(cx) and I c Ann(cx). By maximality, we have I = Ann(cx) 

and hence b ¢ I. Therefore, I is prime and I ¢ Ass(M). 

Corollary (3.4). - Let A be a noetherian ring, M an A-module 

and a ¢ A. Then the homothety M a ~ M is injective if and only if 

a does not belong to any associated prime of M. 

Proof. If a belongs to an associated prime, then clearly the 

homothety is not injective. Conversely, suppose ax = 0 for some 

nonzero x ¢ M. Since Ax / O, there exists p ¢ Ass(Ax) by (3.3). 

Then p ¢ Ass(M) and p = Ann(bx) for some b ¢ A. Since abx = O, 

it follows that a ¢ p. 

Corollary (3.5). - The set of zero divisors of a noetherian 

ring A is the union of the associated primes of A. 

Lemma (3.6). - Let A be a ring, M an A-module and N a 

submodule of M. Then 

Ass(M) c Ass(N) U Ass(M/N). 

Proof. Let p ~ Ass(M), E the image of the corresponding 

map A/p ......... ~M and F = E ~ N. If F = O, then E is isomorphic to 

a submodule of M/N~ hence, p ~ Ass(M/N). If F ~ O and x is a 

nonzero element of F, then Ann(x) = p by (3.2). Hence 

p ~ Ass(F) c Ass(N). 

Theorem (3.7). - Let A be a noetherian ring and M a finite 

A-module. Then: 

(i) There exists a filtration M = MO)...~Mn = O such that 

Mi/Mi+1 ~ A/p i where Pi is a prime of A. 

(ii) For any such filtration Ass(M) c {Po ..... pn_1} c Supp(M). 

In particular, Ass(M) is finite. 
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Proof. To prove (i), let N be a maximal submodule of M 

having such a filtration. If M/N / O, then, by (3.3) M/N contains 

a submodule N'/N isomorphic to A/p for some prime p of A, con- 

tradicting maximality. Hence M = N. 

The first inclusion of the secon d assertion follows immediately 

from (3.2) and (346). Since pi¢ Supp(A/Pi), the second assertion 

follows from (2.2). 

Lemma 13.8 ) . - Let A be a ring and M an A-module. If V 

is a subset of Ass(M), then there exists a submodule N of M such 

that Ass(N) = Ass(M) - ¥ and Ass(M/N) = ~. 

Proof. By Zorn's lemma, there exists a maximal submodule N of 

M such that Ass(N) c Ass(M) - ~. By (3.6) , it suffices to show that 

Ass(M/N) c ~. Let p ~ Ass(M/N)! then M/N contains a submodule 

N'/N isomorphic to A/p. By (3.2) and (3.6), Ass(N') c Ass(N) U {p}. 

Since N is maximal, p ~ ~. 

Proposition (3..9) . - Let A be a noetherian ring, S a multi- 

plicative set, ~ the set of primes not intersecting S and M an 

A-module. Then the map p~---~S-ip is a bijection from ASSA(M)N ~ to 

ASSs-IA(S-IM ) . 

Proof~ The map pl )S-Ip is a bijection from ~ to the set 

of primes of S-IA. Furthermore, if A/p .... >M is injective, then 

S-I(A/p) = S-IA/S-Ip : S-IM is injective~ so, if p ~ Ass(M) n ~, 

then S-Ip ¢ Ass(S-IM). 

Let S-Ip ~ Ass(S-IM)~ there exist x ¢ M and t ~ S such 

that S-Ip = Ann(x/t). Since p is finitely generated, there exists 

an element s ~ S such that p c Ann(sx). Moreover, if bsx = O, 
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then b/i ~ S-Ip and, hence, b ~ p. Thus, p = Ann(sx) and the proof 

is complete. 

Corollary (3.101 . - Let A be a noetherian ring and M an 

A-module. Then Supp(M) = UV(p) as p runs through Ass(M). 

Proof. By (3.3), Mp~ 0 if and only if Ass A (Mp) / ~. 
P 

However, by (3.9) , Ass A (Mp) / @ if and only if there exists 

P 
q ~ Ass(M) such that q Q (A-p) = ~ i.e., if and only if p ) q for 

some q ~ Ass(M). 

Remark (3.11). - Let A be a noetherian ring and M an 

A-module. The minimal primes of Ass(M) are called the minimal (or 

isolated) primes of M and, by (3.10), they correspond to the maximal 

points of Supp(M) ° Those primes of Ass(M) which are not minimal 

are called embedded primes. 

Let X be a locally noetherian scheme and F an Ox-MOdule. 

A prime cycle of F is defined as a closure in X of a point 

x ~ Ass(F). An embedded prime cycle of F is defined as a prime 

cycle which is properly contained in another prime cycle of F. The 

embedded prime cycles of O x are often called the embedded com- 

ponents of X. 

Definition (3.12). - Let A be a noetherian ring, M an 

A-module and Q a submodule of M. If Ass(M/Q) consists of a single 

element p, then Q is said to be p-Drimar~ with respect to M. 

Definit!Qn (3.13~. - Let A be a noetherian ring, M an 

A-module and N a submodule of M. A Drimarv decomDosition of N in 

M is defined as a finite family {Qi } of submodules of M which 

are primary with respect to M and such that N = NQ i. A primary 
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decomposition is said to be irredundant if it satisfies the following 

two conditions : 

(a) j~i Qj ~ Qi for any i. 

(b) If Pi is the prime corresponding to Qi' then pi ~ pj when- 

ever i / j. 

Theorem (3.14)o - Let A be a noetherian ring, M a finite 

A-module and N a submodule of M. Then there exists a primary 

decomposition of N in M, {Q(p) }, where p runs through Ass(M/N) 

and Q(p) is p-primary. 

Proof. Replacing M by M/N, we may assume N = O. By (3.8) , 

there exists, for each p ~ Ass(M), a submodule Q(p) of M such 

that Ass(M/Q(p)) ={p} and Ass(Q(p)) = Ass(M) - {p}. Let P = NQ(p). 

Then Ass(P) c Ass(Q(p)) for all p ~ Ass(M)~ hence, Ass(P) = ~. 

Thus, by (3.3), P = O. 

Proposition (3.15). - Let A be a noetherian ring, M an 

A-module and N a submodule of M. Let {Qi } be a primary decom- 

position of N in M and Pi the prime corresponding to Qi" Then 

Ass(M/N) c {pi } and the decomposition is irredundant if and only if 

Ass(M/N) = {pi } and the Pi are distinct. Consequently, if M is 

of finite type, then the associated primes of M/N are precisely the 

associated primes of the M/Q i appearing in an irredundant decom- 

position of N in M. 

Proof. Since N = AQi, there is an injection M/N )~M/Q i- 

So, by (3.2) and (3.6) , Ass(M/N) c {pi } and, if equality holds and the 

Pi are distinct, j~i Qj ~Qi for any i. 

If {Qi } is irredundant, let Pi = j~i Qj" Then Pi N Qi = N, 

Pi/N ~ (Pi + Qi)/Qi c M/Q i and ~i/N c M/N. It follows that 

Pi ~ Ass (Pi/N) c Ass (M/N) . 
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Remar K (3.16). - Let A be a ring, S a multiplicative set, 

M an A-module and N a submodule of M. Then the inverse image N' 

of S-IN under the map M---~S-IM is called the saturation of N 

with respect to S. Clearly, N' is the set of all x ~ M such that 

sx ~ N for some s ~ S. 

If N is p-primary and SAp = ~ then the homothety 

s : M/N >M/N is injective by (3.4). Therefore, the saturation of 

N is equal to N. 

ProDosition (3.17). - Let A be a noetherian ring, M an 

A-module, N a submodule of M and I = Ass(M/N). Let S be a 

multiplicative set, J the subset of I consisting of those primes 

pj such that SDpj= ~, and N' the saturation of N with respect 

to S. If {Qi } is an irredundant primary decomposition of N, then 

~-iQi}i~ J is an irredundant primary decomposition of S-IN and 

[Qi}i~j is an irredundant primary decomposition of N'. 

Proof. It follows easily from ~3.9) and (3.15) that {S-IQi}iEj 

is an irredundant primary decomposition of S-IN; hence, by (3.16), 

we conclude that {Qi}i~j is an irredundant primary decomposition 

of N'. 

Corollarv (3.18). - Let A be a noetherian ring, M an A- 

module and N a submodule of M. If PO is a minimal prime of M/N 

and {Q(p)} is an irredundant primary decomposition of N in M, 

then Q(po ) is uniquely determined by N. 

Proof. If S = A-Po, then Q(po ) is the saturation of N with 

respect to S by (3.17). 
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4. Length and characteristic functions 

D@finition (4.1). - Let A be a ring and M an A-module. A 

filtration 

= = (o) M M 0 )...5 M n 

is said to be a composition series if each quotient Mi/Mi+ 1 is a 

simple A-module. By the Jordan-H61der theorem, any two composition 

series of M have the same number of terms! that number, n, is called 

the lenqth of M and denoted ~A(M) or 2(M). 

Remark (4.2). - Let 0 ) M' .... >M ~M" >0 be an exact 

sequence of A-modules. Then it is easily seen that M has finite 

length if and only if M' and M" have finite length. In this case, 

we have 

~(M) = ~(M') + Z(M"). 

Proposition (4.3). - Let A be a noetherian ring and M a 

finite A-module. Then M has finite length if and only if Ass(M) 

(resp. Supp(M)) consists entirely of maximal ideals. 

Proof. Since all simple A-modules are isomorphic to A/m for 

some maximal ideal m of A, the assertion follows from (3.7) and 

(3.10) . 

DefinitiQn ' (4.4). - Let A be a ring. An A-module M is said 

to be artinian if every nonempty set of submodules of M has a 

minimal element, (or equivalently, if every descending chain of sub- 

modules stops). 

~rODosit~Q D (4.5). - Let A be a ring. An A-module M has 

finite length if and only if it is both artinian and noetherian. 
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~roof. If M has finite length, then, by the Jordan-H61der 

theorem, every chain of submodules has finite length! hence, M is 

both artinian and noetherian. Conversely, construct a filtration 

(M i) of M as follows: Let MO= M and let Mi+ 1 be a maximal 

proper submodule of M i. Since this descending chain stops, it is 

a composition series of M. 

bemma (4.6~. - Let A be a ring in which 0 is a product of 

maximal ideals ml,...,m n. Then any prime p is one of the m i and 

A is both artinian and noetherian. Moreover, if the A/m i are 

algebras of finite type over a field k, then A has finite 

k-dimension. 

~roof. Since p ) O = ml...mn, it follows that p = m i for 

some i. Let lj= ml... m. for i ~ j ~ n. Then A has a finite 
3 

filtration I O ~... ) In= O whose quotients Ij_I/I j are finite 

vector spaces over A/mj. Hence, by (4.5), A is both artinian and 

noetherian. Moreover, if A/m i is of finite type over k, then it 

has finite k-dimension by the Hilb,ert Nullstellensatz (III,2.7)! 

whence, the assertion. 

Theorem (4.7). - A ring A is artinian if and only if the 

following two conditions hold: 

(i) A is noetherian. 

(ii) Every prime ideal of A is maximal. 

Moreover, if A is artinian, then A has only a finite number 

of primes and rad(A) is nilpotent. If, in addition, A is of finite 

type over a field k, then A has finite k-dimension. 

proof. Suppose A is noetherian. Then by noetherian induction, 

every ideal of A contains a finite product of primes. If, in 
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addition, every prime is maximal, then O may be written as a product 

of maximal ideals. Hence, by (4.6), A is artinian. 

Conversely, suppose A is artinian. Let m be the smallest 

product of maximal ideals of A. Let S be the set of ideals con- 

tained in m such that Im ~ O. If I ~ S is minimal, then 

m2I = mI / O1 hence, by minimality, mI = I. Since m ¢ rad(A) , if 

I = xA, then I = O by Nakayama's lemma. Therefore, if x ~ I, then 

2 
xm = O~ so Im = O. Hence, S must be empty and m = m = O. Thus, 

by (4.6) , A is noetherian and every prime is maximal. 

Cprollary (4.8). - Let A be an artinian ring and M a finite 

A-module. Then M has finite length and Ass(M) = Supp(M). 

Proposition (4.9). - Let A be an artinian ring and m I ..... m r 

the maximal ideals of A. Then: 

(i) The natural map u : A ~KA is an isomorphism. 
m~ 

(ii) For n sufficiently large, the natural maps v. : A >A/m~ 
1 m. 1 

1 
are isomorphisms. 

Proof Since X = Spec (A) is discrete, u is simply the natural 

isomorphism A ~,F (X ,O x) . 

n 
, becomes a unit in the local ring A/mi~ In general any s / m i 

hence, by the universality of A , v. exists. For fixed i, consider 
m i 

(j~ 3) for any n. By ui: A )A . Clearly, there exists s £ i m3 -mi 
m i 

n induces (4.7), if n >> O, then sa = O for any a ~ mi! so, u i 

u! : A/m~ )A , an inverse to v.. 
1 1 m. 1 

1 

_Lemma (4.10). - Any polynomial P E@[n] of degree d may be 

expressed in the form 
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P(n) = Cd(d) + Cd_l(dn_l ) + ... + c o 

.~ 6. If P(n) is an integer for all large integers where c I 

the c. are all integers. 
1 

Proof. The assertions follow easily by induction on 

formulas 

s s! ~ P' n = ( ) + (n) 

where P' is a polynomial of degree s-l. 

n, then 

s from the 

Let H = ~ H n be a graded ring such that H O is an artinian 

ring and H is generated over H 0 by a finite number of elements of 

H 1. Let M = ~ M be a graded H-module of finite type. Then, by 
n 

(4.8), the Ho-module Mn, being of finite type, has finite length. 

The function X(M,n) = ~H (%) is called the Hilbert characteristi~ 
% $  

function of M. If O >M' ---~M )M" >O is an exact sequence of 

graded H-modules of finite type, then, by (4.2) , 

~(M,n) = %(M' ,n) + x(M",n). 

fying: 

Theorem (4.11)~ (Hilbert). - Let H be a graded ring satis- 

(a) H O is an artinian ring. 

(b) H is an Ho-algebra generated by x I .... ,Xr~ H i • 

Let M be a graded H-module of finite type. Then there exists a 

polynomial Q(M,n) of degree ~r-I such that %(M,n) = Q(M,n) for 

large integers n. 

Proof. The proof proceeds by induction on r. If r = O, then 

H = H O and, by (4.8), M is an H-module of finite length. Therefore, 

M = O for large n and Q(M,n) = O. 
n 
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Assume the assertion holds for r-l and let M be a graded 

Ho[X I ..... Xr]-module of finite type. The exact sequence 

x 
r 

-----~M ~ 20 0 >N n n Mn+l----~Rn+l 

yields ~X(M,n) = X(M,n+I)-x(M,n)=x(R,n+I)-x(N,n). Now, N and R are 

graded Ho[Xl, .... Xr_l]-modules since x r annihilates them. There- 

fore, by induction, ~%(M,n) coincides for all large n with poly- 

nomial Q(R,n+I) - Q(N,n) of degree ~ r-2. Therefore, the assertion 

follows from (4.10). 

Lemma (4.12). - Let A be a noetherian ring, M a finite 

A-module, q an ideal of A and (Mn) a q-good filtration of M. 

If M/qM has finite length, then M/M n has finite length for all 

integers n > O. 

Proof. By (2.6), Supp(M/qnM) = Supp(M) n V(q n) = Supp(M/qM) ~ 

so, by  ( 4 . 3 ) ,  N/qnM h a s  f i n i t e  l e n g t h .  S i n c e  M ~ qnM f o r  a l l  
n 

n > 0, it follows that M/M has finite length. 
n 

Theorem (4.13. (Samuel). - Let A be a noetherian ring, M a 

finite A-module and q an ideal of A such that M/qM has finite 

length. Let (Mn) be a q-good filtration of M. 

(i) There exists a unique polynomial P(Mn) such that P(Mn) (m) = 

= ~(M/M m) for large ml furthermore, P(Mn) depends only on 

gr(S) . 

If q can be generated by r elements, then deg(P(Mn)) ~ r. 

(Mn) are independent 

(ii) 

(iii) The degree and leading coefficient of P 

of the choice of filtration. 

Proof. Let I be the annihilator of M, B = A/I and 

p = (q+I)/I. Filter B p-adically and let H = gr(B). By (2.6) and 

(4.7) , B/p is artinian and since p is finitely generated, H satis- 
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fies (a) and (b) of (4.11) . Moreover, since (M n) is q-good, gr(M) 

is a finite gr (B) -module by (1.12). 

Hence, by (4.11) , there exists a polynomial Q(gr(M) ,n) 

coincides with %(gr(M) ,n) for large n. On the other hand, 

~(M/M n) = ~(M/Mn+ 1) - ~(M/M n) = x(gr(M),n)i 

(4.10) that there exists a polynomial PM (n) 
n 

Z(M/M n) for large n. 

for 

which 

hence, it follows from 

which coincides with 

Since APM (n) has degree <~r-l, PM (n) has degree <r by (4.10). 
n n 

To prove (iii), let n o be an integer such that Mn+l = qM n 

n i> n O . Then for n large, we have 

n+noM 
q c Mn+no= qnMnOC qnM c M n. 

Hence, for large n, 

P(qms) (n4n O) ~>P(Mm) (n+n O) I> P(qmM) (n) i> P(Mm) (n) , 

and the proof is complete. 

Definition (4.14) - The polynomial P m 
(q M) 

Hilbert-Samuel pp!ynomial and is usually denoted 

is calked the 

Pq (M,n) . 

Lemma (4.15). - Let A be a noetherian ring, q an ideal of 

A and O )M' )M ) M" ) 0 an exact sequence of A-modules of 

finite type. If M/qM has finite length, then M'/qM' and M"/qM" 

Pq (M",n) - P (M' ,n) have finite length and the polynomial Pq(M,n) - q 

has degree ~< deg (Pq(M' ,n)) - 1. 

Proof. The filtration (M~) = (M' N qnM) of M' is q-go'od by 

the Artin-Rees lemma (1.14). Since, by (4.2), 

~(M/qnM) = ~(M,,/qnM ',) + ~(M'/M' n) 

the conclusion follows from (4.13, (iii)) . 



Chapter III- Depth and Dimension 

1. Dimension theory in noetherian rings 

Remark (1.1) . - Let X be a topological space. The dimension 

of X, denoted dim(X), is defined as the supremum of all integers r 

such that there exists a chain of closed irreducible subsets 

x Xo r. 

If A is a ring, the dimension of X = Spec(A) is called the (Krull) 

dimension of A and is denoted dim(A). Let M be an A-module and 

I the annihilator of M. The dimension of M, denoted dim(M), is 

defined as the dimension of the ring A/I~ M is said to be 9qui- 

dimensional if dim(M) = dim(A/p) for all minimal essential primes P 

of I. If p is a prime, then the heiqht of p is defined as the 

dimension of A . If A is noetherian and M is a finite A-module, 
P 

then, by (II, 2.5), dim(M) = dim(Supp(M))~ by (II,3.10), dim(Supp(M)) 

is equal to the supremum of the integers dim(A/p) as p ranges 

over Ass(M) (resp. Supp(M)). 

Remark (1.2) . - Let A be a semilocal noetherian ring. An 

ideal q of A is said to be an ideal of definition of A if the 

following two conditions hold: 

(a) q (rad(A). 

(b) A/q is an artinian ring 

If q' ) q is another ideal of definition, then, by (II,4.7), q,m c q 

for some integer m. 

Let A be a semilocal noetherian ring, q an ideal of defini- 

tion of A and M a finite A-module. The, by (II,4.8) , M/qM has 
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finite length. Furthermore, it is clear that if q' ( q is another 

ideal of definition, then Pq, (M,n) ~< Pq(M,n) and Pq(M,n) <~ Pq, (M,mn) 

(II,4.13). Therefore, the degree d(M) of Pq(M,n) is independent 

of q. 

Let s(M) be the smallest integer r such that there exist 

x i .... ,Xr~ rad(A) with M/(xlM + ... + XrM) of finite length. 

Lemma (1.3). - Let A be a semilocal noetherian ring and M 

a finite A-module. Let x ~ rad(A) 

x 
homothety M > M. Then 

(i) 

(ii) 

and let M be the kernel of the 
x 

s(M) ~< s(M/xM) + i. 

Let {pi } be the primes of Supp(M) such that dim(A/p i) = dim(A). 

If x / upi, then dim(M/xM) ~< dim(M)-l. 

(iii) If q is an ideal of definition of A, then the polynomial 

Pq(x M) - Pq(M/xM) has degree ~< d(M)-l. 

Proof. Assertions (i) and (ii) are trivial. To prove (iii) , 

apply (II,4.15) to the exact sequences 

O ~ M ~M .... >xM 70 
x 

O --> xM > M ---~ M/xM ~ 0. 

Theorem (1.4). - Let A be a semilocal noetherian ring and M 

a finite A-module. Then 

dim(M) = d(M) = s(M). 

Proof. Step I- dim(M) ~< d(M) . 

If d(M) = O, then M has finite length and, by (II,4.3) and 

(i.l) dim(M) = O. 

Suppose d (M) I> I and po ~ Ass (M) 

Then M contains a submodule N 

is such that dim(A/p O) = dim (M) . 

isomorphic to A/p O and, by 
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(II,4.2) , d(N) ~< d(M) . Thus, it suffices to prove Step I for M = A/p O. 

Let PO ~ "'" ~ Pn be a chain of primes of A, If n = O, 

then clearly n ~ d(M). If n > O, choose x ~ Pl N rad(A) , but 

x ~ PO" The chain Pl ~ "'" ~ Pn belongs to Supp(M/xM) I so, 

n-1 ~ dim(M/xM). However, M = Ol by (1.3), d(M/xM) ~ d(M)-l. x 

Hence, Step I follows by induction on d(M). 

Step II. d(M) ~ s(M). 

Let I = x,A+...+XrA be such that I ¢ rad(A) and M/IM has 

finite length. If q = I + (rad(A) n Ann(M)), then q ia an ideal 

of definition of A. Indeed, q ¢ rad(A) and V(q) = 

= V(I) n (V(rad(A)) U Supp(M)) consists entirely of maximal ideals. 

Furthermore, by (II,4.13) , Pq(M,n) = PI(M,n) since InM = qnM for 

all n. Again, by (II,4.13), PI(M,n) has degree ~ r. Therefore, 

d(S) ~ s(S). 

Step II!. s(M) ~< dim(M) . 

The proof proceeds by induction on n = dim(M), which is finite 

by Step I. If n = O, M has finite length by (II,4.3). 

Suppose n ~ i and let {pi } be the primes of Supp(M) such 

that dim(A/p i) = n. They are not maximal since n ~ I! hence, by the 

following lemma, there exists x E rad(A) such that x ~ Pi for all 

i. By (1.3), s(M) ~ s(M/xM) + 1 and dim(M) ~ dim(M/xS) + 1 .  By 

induction, s(M/xM) ~ dim(M/xM)! so s(M) ~ dim(M). 

Lemma (1.5). - Let A be a ring and E a subset of A which 

h 
is stable under addition and multiplication! let {Pi}i= I be a 

nonempty family of ideals of A such that P3 .... 'Ph are prime. If 

E ¢ U Pi' then E c Pi for some i. 
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Proof. The assertion is trivial for h = i, so assume h > i. 

Since E = O(ENPi) , we may suppose by induction on h that there is 

no index j such that E N pj¢ i~j Pi" For each j, choose an element 

xj ~ E D pj such that x.3 ~ Pi for i / j. Then y = Xh+ j~ xj~ E, 

but Y ~ Pi for any i. 

Corollary (1.6). - Let A be a semilocal noetherian ring and 

M a finite A-module. Then, for each x ~ rad(A) , 

dim(M/xM) ~ dim(M) - I, 

with equality if x ~ p where p runs through the primes of Supp(M) 

such that dim(M) = dim(A/p). 

Proof. By (1.3) , s(M/xM) ~ s(M) - I! hence, the assertion 

follows from (1.4). 

Corollarv (!.7). - Let ~ : A ~B be a local homomorphism of 

noetherian rings, m the maximal ideal of A and k = A/m. Then 

dim(B) ~ dim(A) + dim(B~Ak). 

Proof. Let d = dim(A) and let I be an ideal generated by 

d elements of m such that A/I has finite length. By (II,4.5), 

A/I is artinian! so, by (II,4.7) , m/I is nilpotent. Hence, mB/IB 

is nilpotent and, thus, dim(B~Ak ) = dim(B/IB). By (±.6), 

dim(B/IB) 9 dim(B) - dl whence, the assertion. 

Corollary (1.8). - Let A be a semilocal noetherian ring and 

M a finite A-module. Then dimA(M) = dim~(M). 

Proof. By (II,I.19) and (II,4.13) , d(M) = d(M) ! hence, the 

assertion follows from (1.4). 
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Corollary (1.9) . - Let A be a noetherian ring, p a prime of 

A and n integer. The following conditions are equivalent: 

(i) ht(p) ~ n. 

(ii) There exists an ideal I of A generated by n elements such 

that p is a minimal (essential) prime of I. 

Proof. If (ii) holds, IA is an ideal of definition of A . 
P P 

Hence, ht(p) = dim(Ap) = S(Ap) ~ n. Conversely, if (i) holds, there 

exists an ideal of definition of A generated by n elements 
P 

xi where s ~ A - p. It follows by (II,3.9) Lhat p is a minimal 
s 
prime of I = x, A+.-. +XnA. 

Remark (1.1Q). - With n = I, (1.9) is known as Krull's 

principal ideal theorem. 

2. Dimension theory in algebras of finite type over a field. 

Lemma (2.1). - Let A,B be domains and suppose B is integral 

over A. Then B is a field if and only if A is a field. 

Proof. Suppose B is a field and let a be a nonzero element 

of A. Since i/a ~ B, it satisfies an equation 

(l/a) n + an_l(1/a) n-1 + ... + ao= 0 with a.l ~ A. Then 1/a = 

= -(an_l+ aan_ 2 + ... + an-la O) and, consequently, 1/a ~ A. 

Conversely, suppose A is a field and let b be a nonzero ele- 

ment of B. Then b satisfies an equation bn+ a b n-1 n-I +...+ ao= 0 

with a i ~ A and a 0 ~ O. Hence, 1/b = -((al/ao)+...+(an_I/ao)bn-2+ 

+ (1/ao)bn-l) E B. 

Proposition (2.2) (Cohen-Sgidenberq). - Let A be a subring of 

B and p a prime of A. Suppose B is integral over A. 
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(i) If P is a prime of B lying over p, then P is maximal if 

and only if p is maximal. 

(ii) If pt ) P are primes of B lying over p, then P = P'. 

(iii) If p is any prime of A, there exists a prime P of B 

lying over p. 

Proof. Assertion (i) follows from (2.1) applied to A/p and 

B/P. To prove (ii) and (iii) , replace A by S-IA and B by S-IB 

where S = A - ps then, A is local with maximal ideal p. Now, (i) 

implies (ii) and that, if P is any maximal ideal of B, then 

p = P N A, completing the proof. 

Lena (2.3). - Let A be a domain integrally closed in its 

quotient field K. Let L be a finite normal extension of K, B the 

integral closure of A in L, G the group of K-automorphisms of L 

and p a prime of A. Then G operates transitively on the primes 

of B lying over p. 

Proof. Let P, P' be primes of B lying over p. If g E G, 

the prime gP lies over p and, by (2.2) , it suffices to show that 

P' ¢ gP for some g ~ G. Let b E P' and let a = Hg(b). Then 

a q ~ K where q is a power of the characteristic of K. Since A 

is integrally closed, a q E A and thus a q ~ p. Hence, there exists 

an automorphism g such that g(b) ~ P, and b ~ g-Ip. Hence, 

P' ¢ UgP~ so, by (1.5), P' ¢ gP for some g. 

ProDosition (2.4) (Cohen-Seidenberq). - Let B be a domain, 

A a subdomain of B, p ~ p' primes of A, and P' a prime of B 

lying over p'. Suppose A is integrally closed and B is a finite 

A-module. Then there exists a prime P ~ P' lying over p. 
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Proof. Let K be the quotient field of A, L a finite normal 

extensio~ of K containing B, and C the integral closure of A in 

L. By (2.2), there exist a prime Q' of C lying over P' and a chain 

Q ~ Q" of primes of C lying over p ~ p'. By (2.3), there exists 

a K-automorphism g of L such that gQ" = Q'. If P = gQNB, then 

P is the required prime. 

Theorem (2.5). (Noether normalizatio~ !gmma). - Let k be a 

field, A a k-algebra of finite type and IIc ... c I r a sequence of 

ideals of A with Ir/ A. Then there exist elements tl,...,t n of 

A, algebraically independent over k, such that: 

(a) A is integral over B = k[t I ..... tn]. 

(b) For each i, 1 ~ i ~ r, there exists an integer h(i) ~ O 

.N B is generated by {t I ..... th(i) }. such that I l 

Proof. A is a quotient of a polynomial algebra A t = k[T 1 .... Tm] 

and clearly we may assume A = A t . The proof proceeds by induction 

on r. 

Step I. Suppose r = I and I I is a principal ideal generated 

by a nonzero element t I. By assumption, t1= P(TI,...,T m) ~ k where 

Za(j)T (j) E kit I ..... Tm]. We are going to choose positive P 

integers s i such that A is integral over B = k[tl,...,tm] where 
s. 

t i= T.-I Ti I' 2 ~ i ~ m. To do this, it will suffice to show that 

T I is integral over B. 

Now T I satisfies the equation 

Jl s2J2 s Jm 
tl-Za(j)T I (.t2+ T 1 ) .,. (tm+ TI m) = O. 

. °. . . = ~i 
Let f(j) = jl+ s232 +. + Sm3 m If s i where ~ is an integer 

greater than deg(P), then the f(j) are distinct. Suppose f(j') 



- 45 - 

is largest among the f(j). Then the above equation may be written 

Tf(j ' ) a(j,) 1 + / Qv(t)T~ and, hence, T 1 is integral over B. 
v<f(j ' ) 

Clearly, tl,...,t m are algebraically independent. Suppose 

x ~ IIN B. Then x = tlx' where x' ~ A N k(tl,...,tm). Further- 

more, A N k(tl,...,tm) = B since B is integrally closed. Hence 

IIN B = tlB and the proof of Step I is complete. 

Step If. Suppose r = i and 11 is arbitrary. The proof 

proceeds by induction on m. The case m = 0 is trivial. We may 

assume 11 / O. Let t I be a nonzero element of I I. Then t I ~ k 

because I I / A. By Step I, there exist elements u2,...,u m such 

that t 1, u2, .... u m are algebraically independent and satisfy (a) 

and (b) with respect to A and (tl). By induction, there exist 

algebraically independent elements t 2 ..... t m satisfying (a) and (b) 

with respect to k[u 2, .... Um] and I N k[u 2 ..... Um]. Then t I .... ,t m 

are algebraically independent and satisfy (a) and (b) with respect 

to A and I I . 

Step III. Assume the theorem holds for r-1. Let Ul,...,u m 

be algebraically independent elements of A satisfying (a) and (b) 

for the sequence II¢ ...¢ Ir_ 1 and let s = h(r-1). By Step II, 

there exist algebraically independent elements ts+l,...,t m satis- 

fying (a) and (b) for k[Us+ 1, .... Um] and Irn k[Us+l,...,Um]- 

If we set t i = u i for i ~ s, then tl,...,t m are algebraically 

independent and satisfy (a) and (b) for II¢ ...¢ I r- 

Theorem (2.6). - Let A be a domain of finite type over a 

field k. 

(i) If Po / "'' ~ Pr is a saturated chain of primes of A, then 

r is equal to tr.degkA, (the transcendence degree of A 

over k). 
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(ii) tr.degkA = dim(A) 

(iii) If p is any prime of A, then dim(Ap) + dim(A/p) = dim(A) 

proof. Assertion (i) implies (ii) directly, (iii) by applica- 

tion to chains through p. To prove (i) , by (2.5), choose algebra- 

ically independent elements tl,...,tn~ A such that A is integral 

over B = k[t I .... ,tn] and Pi-e- pi N B = (t l,...,th(i)). Then 

n = tr.degkA and, by (2.2), r ~ n; since the chain is saturated, 

h(r) = n by (2.2) and h(i+l) = h(i)+l by (2.4) applied to A/p i 

and B/p~ ~ k[th(i)+l ..... tn]. It follows that r = h(r) = n. 

Corol!arv (2..7) (Hilbe;t Nullstellensat~ . - Let A be an 

algebra of finite type over a field k and m a maximal ideal of A. 

Then the field A/m is algebraic over k. 

Proposition (2.8). - Let k be a field and X an algebraic 

k-scheme. Then: 

(i) A point x ~ X is closed if and only if k(x) is a finite 

extension of k. 

(ii) The closed points of X are dense. 

Proof. Since a point x is closed if and only if x is closed 

in every affine open subset containing x, it follows that we may 

assume X is affine. Let A be the ring of X, m the ideal of x 

in A. Then x is closed if and only if m is maximal. However, by 

the Hi]bert Nullstellensatz (2.7), m is maximal if and only if 

A/m is a finite field extension of k. 

3. Depth 

Definition (3.1) . - Let A be a ring and M an A-module. Let 

(x I .... ,Xr) be a sequence of elements of A and M i = 
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= M/(XlM + ... + xiM). Then (x I .... ,x r) is said to be M-reqular 

if the sequences 

xi+l 
0 ~M > M. 

1 1 

are exact for O ~ i ~ r-l. 

Lemma (3.2). - Let A be a ring and M an A-module. Let x 

be an element of A, J an ideal of A and I = J + xA. If x is 

gr~(M)-regular,then the surjection defined by T: >x, 

: gr~(M)~A(A/xA)[T] )gr~(M) , 

is an isomorphism. Conversely, if M/JM is separated for the I-adic 

topology and ~ is an isomorphism, then x is (M/JM)-regular. 

Proof. Assume x is gr~(M)-regular. Let Pk = 

k(M) and filter them by = (gr~(M)~A(A/xA) [T]) k and Ok= gr I , 

(Pk) i = j~-i grjk-j (M) ~A (A/xA) T j and (Qk) i = ~ ((Pk) i ) . Then, by 

(II,l.5), to prove ~k injective, it suffices to prove 

i (pk) i ~k,i: gr >gr (Qk) injective for each i since (Pk)k+l = O. 

i 
However, gr (Pk) = (JZM/(xjiM+ji+IM))Tk-i and (Qk) i+l is the 

image of ~= ~M+xjk-IM + ... + xk-i-ij1+IM in IkM/Ik+lM. Hence, 

it remains to show that, if y ~ jim and xk-iy ~ ~+ Ik+IM, then 

y ~ xjiM+ji+IM. 

By (II,l.5) , x is (M/jhM)-regular for any h > O. Set 

h = i + 1~ since xk-iy E Ji+IM+Ik+IM ¢ ji+IM+xk-i+lM, there exists 

z ~ M such that y - xz ~ Ji+IM. Set h = i~ since y ~ jiM and 

xz ~ jiM, it follows that z ~ jiM. Hence, y ~ xjiM + Ji+IM and 

is injective. 

Conversely, let ~(~ ~ T k-l) ~ grk-l(M/JM) where ~ ~ M/JM. 

* Tk-l) = Suppose gri(x) (~(~ ~ ) ~(~ ~ T k) is zero. Then ~ = O, so 

by (II,1.5) , x is (M/JM)-regular. 
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Definitio D (3.3}. - Let A be a ring and M and A-module. A 

sequence (x I .... ,x r) of elements of A is said to be M-quasi- 

reqular if the canonical surjection 

.... *(M) ~r: (M/IM)[TI 'Tr] )grI ' 

where I = xlA + ... + XrA, is an isomorphism. 

Theorem (3,4). - Let A be a ring and M an A-module. Then 

an M-regular sequence (x I ..... x r) is M-quasi-regular. Conversely, 

if (xl,...,Xr) is M-quasi-regular and if M, 

M/xlM ..... M/(xlM + ... + Xr_lM) are separated for the I-adic 

topology where I = XlA + ... + XrA, then (Xl,...,x r) is M-regular. 

Proof. Assume (x I ..... x r) is M-regular. If r = O, the 

assertion is trivial. Proceeding by induction, assume 

~r-l: (M/JM) IT i ..... Tr_l] )grj(M) is an isomorphism where 

J = xlA + ... + Xr_IA. Then, since x r is (M/JM)-regular, x r is 

grj(M)-regular. So, by (3.2), ~ : gr~(M) ~ A(A/Xr A) [Tr] ........ )gr~(M) 

is an isomorphism~ therefore, ~r = ~ o (~r_l~ id) is an isomorphism 

and (x I ..... x r ) is M-quasi-regular. 

Conversely, assume ~r is an isomorphism. If r = O, the 

assertion is trivial. If r > O, then ~r = ~ o (~r_l ® id) and ~r-i 

is surjectivel so, ~ is an isomorphism. Hence, by (3.2), x r is 

(M/JM)-regular. Furthermore, ~r decomposes into surjections 

~r , 
(M/IM) IT 1 ..... Tr] - >gri(a ) 

~ gri (~r_ I ) 

gri((M/JM) [T 1 ..... Tr_l] ) -- > gri (grj(M)) 
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Thus, grl(~r_i) is injective; hence, since M/JM is separated, 

~r-i is injective by (II,I.5). Therefore (x i .... ,Xr_ I) is M-quasi- 

regular. Since J ¢ I, by induction (x i .... ,Xr_ i) is M-regular! 

so, the proof is complete. 

Corollary (3.51. - Let A be a noetherian ring and M a finite 

A-module. Then elements x I ..... Xr~ rad(A) are M-regular if and 

only if they are M-quasi-regular. In particular, M-regularity does 

not depend on the order. 

Proof. The assertion follows immediately from (11,1.15) and (3.4) 

Lemma (3.61. - Let A be a ring and N a finite A-module. 

For each p ~ Supp(N) , there exists a nonzero A-homomorphism 

: N ~A/p. 

Proof. For p ~ Supp(N) , Np/pNp is a nonzero vector space 

over K, the quotient field of A/p. Hence, there exists a nonzero 

map ~' : Np/pNp ~K. If yl,...,y n generate N/pN as an 

A/p-module, there exists s ~ A-p such that s~'(y i) ~ A/p for all 

i. Hence, s~' is nonzero and maps N/pN into A/p. Take ~ to be 

the composition 

N ,N/pN s~'>A/p. 

Lemma (3,7).- Let A be a noetherian ring, I an ideal of A 

and M a finite A-Module. Then the following conditions are equi- 

valent: 

(i) Ass(M) N V(I) = 

(ii) There exists x ~ I which is M-regular. 

(iii) Hom(N,M) = 0 for all finite A-modules N such that 

Supp(N) (V(I). 
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(iv) Hom(N,M) = 0 for some finite A-module N such that 

Supp(N) = V(I). 

Proof. Assume (i) holds. If p ~ Ass(M), then I ~ p. By 

(II,3.7), Ass(M) is finite; hence by (1.5) , there exists x ~ I 

such that x /u p where p runs through Ass(M). By (II,3.4), x 

is M-regular and (ii) holds. 

To prove (iii)--->(iv), take N = A/I 

We prove (iv)~(i) by contradiction. Let p ~ Ass(M) A V(I). 

Then, by (3.6) , there exists a nonzero map ~ : N )A/p; the 

composition of ~ with the injection A/p ;M, (II,3.2), is a non- 

zero map N ~M. 

The implication (ii) ..... ~-(iii) is the case r = 1 in the 

implication (iv)~(i) below. 

~roposition (3..8). - Let A be a noetherian ring, I an ideal 

of A, and M a finite A-module. For any integer r, the following 

conditions are equivalent: 

(i) Extq(N,M) = 0 for all q < r and all finite A-modules N 

such that Supp(N) ¢ V(I). 

(ii) Extq(N,M) = O for all q < r and some finite A-module N 

such that Supp(N) = V(I). 

(iii) Given Xl,... ,Xn~ I such that (x 1, .... x n) is M-regular, 

there exist Xn+ I, .... Xr~ I such that (x I .... ,Xr) is 

M-regular. 

(iv) There exists an M-regular sequence (x i ..... Xr) with all xi~ I. 

proof. To prove (i) •(ii), take N = A/I 

Assume (ii). For r = O, (iii) is trivial. Assume r i> i and 

that Xl,... ,Xn~ ! are such that (Xl,...,Xn) is M-regular. If 
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n = O, use (iv)---~(ii) of (3.7) to construct xl~ hence, we may 

x I 
assume n >I I. If MI= M/xlM, the sequence 0 , M > M--eM i ........ ~ O 

is exact and yields an exact sequence 

ExtqA(N,M ) .... ) Extq(N,M I) >Extq+i(N,M). 

Thus, (ii) implies that Extq(N,M I) = O for q < r-i. Further- 

more, (x 2 ..... x n) is Ml-regular. Hence, by induction, there exist 

Xn+ i,. .. ,x r~ I such that (x 2, .... Xr) is Mi-regular. Then 

(xl, .... x r) is an M-regular sequence. 

The implication (iii)~(iv) is trivial. 

Assume (iv) and let N be a finite A-module such that 

Supp(N) c V(I). Then (i) holds trivially for r = O. Assume r >I I. 

Then the sequence 0 >M x l'~M ......... ~M i ........... ~ 0 is exact and yields the 

exact sequence 
• q+i u .... q+l 

Extq(N,M i) ~ ~xt A (N,M) ~ ~u A (N,M) . 

By induction, Extq(N,M I) = O for q < r-l, so u is injective. 

Howe~er, u is induced by multiplication by x i on M, but 

may be regarded as induced by multiplication by x I on N. Now, 

x I ~ I and Supp(N) c V(I)| hence, by (II,2.8) , xl: N )N is nil- 

potent. Thus, u is a nilpotent injection. Therefore, Ext q+I(N,M) ~O. 

DefiDition (3.9). - Let A be a noetherian ring, I an ideal 

of A and M a finite A-module. The depth of M with respect to 

I, denoted depthi(M), is defined as the supremum of all integers r 

such that there exists an M-regular sequence (xl,... ,Xr) of 

elements x. ~ I. 
l 

Corollary (3.1Q). - Let A be a noetherian ring, I an ideal 

of A, M a finite A-module and x an M-regular element of I. Then 

depth I (M/xM) = depth I (M) -I. 
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Remark .(3.11). - Let A be a noetherian local ring, m the 

maximal ideal and M a finite A-module. In place of "depthm(M)", 

we usually write "depthA(M)" or simply "depth(M)" By (3.7), 

depth(M) = O if and only if m ~ Ass (M). 

Definition 13.12~. - Let P be a locally noetherian scheme, 

X a closed suscheme of P and F a coherent Op-Module. Then the 

depth of F with respect to X, denoted depthx(F) is the infimum 

of the integers depth 0 (Fx) as x runs through X. 
x 

Proposition (3.13). - Let P be a locally noetherian scheme, 

X a closed subscheme of P and F a coherent Op-MOdule. Then the 

following conditions are equivalent: 

(i) Ext~ v (G,F) = O for all q < r and all coherent Op-MOdules 
P 

G with Supp(G) c X. 

(ii) Ext~ v (G,F) = O for all q < r and some coherent Op-MOdule 
P 

G with Supp(G) = X. 

(iii) Depthx(F) ~ r. 

(iv) Depth(Fx) ~ r for all x ~ X. 

(G,F) x= Ext q (G~ Fx). Proof. It follows from (IV,3.2) , that Extqp P,x 

Therefore, the equivalences follow from the definitions and (3.8). 

Corollary (3.14). - Let P be a noetherian affine scheme with 

ring A, X = V(I) a closed subscheme and F a coherent Op-MOdule 

with F(P,F) = M. Then depthx(F) = depthi(M). 

Proo_____~f. Since, by (IV,3.2) , Ext~ (G,F) is quasi-coherent, 
P 

(3.14) follows from (3.13) and (3.8). 

Proposition (3.15). - Let A be a noetherian local ring and 

M a finite A-module. Then depth(M)~ the infimum of dim(A/p) as 
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p runs through Ass(M). Furthermore, depth(M) is infinite if and 

only if M = O. In particular, depth(M) ~< dim(M) if M / O. 

Proof. We prove by induction on r that if r < depth(M), 

then r ~< dim(A/p) for any p ~ Ass(M). If 0 < r < depth(M), then 

there exists an M-regular element x ~ m. Let M' = M/xM. Then the 

sequence 0 ,M x ~ M ~M' > 0 is exact. By (3.10) , 

r-I ~< depth(M')! so, by induction, r-I < dim(A/p') for any p' in 

Ass(M'). It now suffices to show that for each p ~ Ass(M), there 

exists p' ~ Ass(M') n V(p + xA). For, since x ~ p, dim(A/p) I> 

dim(A/p') + i >I r. 

By (3.7), it suffices to show that Hom(A/p + xA,M') / O. 

However, Hom(A/p + xA,M') = Hom(A/p,M') , and the sequence 

0 ~ Hom (A/p,M) x ) Horn (A/p ,M) ~ Hom (A/p,M') 

is exact ~ its first two terms are nonzero since p ~ Ass(M). 

x e m, Nakayama's lemma implies that Hom(A/p,M')/ O 

Since 

If M = O, then clearly any sequence is M-regular and depth(M) 

is infinite. The converse now follows from (1.4) and {II,3.3). The 

last statement is clear, since dim(M) is the supremum of dim(A/p) 

as p runs through Ass(M), (i.i). 

Proposition (3.16). - Let A,B be noetherian local rings, 

: A ~B a local homomorphism and M a B-module which is of 

finite type over A. Then depthA(M) = depthB(M) . 

Proof. Let m be the maximal ideal of A and let 

x I ..... Xr~ m form an M-regular sequence. Trivially, ~(x I) ..... ~(x r) 

form an M-regular sequence in B. Let N = M/(xiM + ... + XrM) ! by 

(3.i0), depthB(N ) = depthB(M)-r and depthA(N) = depthA(M)-r. It 

follows that we may assume depthA(M) = O. 



- 54 - 

Let P = HomA(A/m,M). Then P is a B-submodule of 

HomA(A,M) = M and, by (3.11), P / O. Since xP = O for all x ~ m, 

it follows that {m} = ASSA(P). Since M is a finite A-module, 

(II,4.3) implies that P has finite A-length! afortiori, P has 

finite B-length, so (II,4.3) implies that ASSB(P) consists precisely 

of the maximal ideal of B. Since ASSB(P) ¢ ASSB(M ) , (3.11) implies 

that depthB(M) = O. 

4. Cohen-Macaulay modules and regular local rings. 

Definition (4.1). - Let A be a noetherian local ring. A 

finite A-module M is said to be Cohen-Macaulay if depth(M) = dim(M). 

The ring A is said to be Cohen-Macaulay if it is a Cohen-Macaulay 

A-module. 

Example (4.2). - A noetherian local domain of dimension 1 is 

Cohen-Macaulay. By Serre's criterion (VII,2.13) , a normal noetherian 

local domain of dimension 2 is Cohen-Macaulay. 

Proposition (4.3) (Cohen-Macau!ay). - Let A be a noetherian 

local ring and M a finite A-module. Suppose M is Cohen-Macaulay. 

Then 

(i) M is equidimensional and without embedded primes. 

(ii) Let x be an element of the maximal ideal such that 

dim(M/xM) = dim(M)-l. Then x is M-regular and M/xM 

is Cohen-Macaulay. 

Proof. By (3.15) , depth(M) ~< inf{dim(A/p) l p ~ Ass(M)} and by 

(1.1), dim(M) = sup{dim(A/p) l p E Ass(M)}| hence, (i) follows from 

(1.1). Assertion (ii) results from (i) together with (II,3.4), (1.6) 

and (3.10) . 
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Definition (4.4). - Let B be a noetherian ring, I an ideal 

of B and A = B/I. Then A is said to be regularlv immersed in B 

if I is generated by a B-regular sequence! more weakly, A is said 

to be a complete intersection in B if I is generated by 

r = dim(B) - dim(A) elements. 

Corollary (4.5) . - Let B be a Cohen-Macaulay local ring, I 

an ideal of B and A = B/I. If A is a complete intersection in 

B, then A is regularly immersed in B, and A is Cohen-Macaulay. 

Definition (4.6). - Let A be a noetherian local ring, m the 

maximal ideal and r = dim(A). Then A is said to be regular if m 

is generated by r elements. Elements of m whose residue classes 

are linearly independent in m/m 2 are called reqular parameters. 

Proposition (4.7). - Let A be a noetherian local ring, m 

the maximal ideal, k = A/m and r = dim(A). Then: 

(i) Elements of m generate if and only if their residue classes 

generate the k-vector space m/m 2. 

dimk(m/m2) , with equality if and only if A is regular. (ii) dim(A) 

Proof. Part (i) results immediately from Nakayama's lemma. By 

(1.9) , dim(A) ~ s, the number of elements in a minimal set of 

generators of m~ by (i) , s = dimk(m/m2)~ whence (ii). 

Proposition (4.8). - Let A be a noetherian local ring, m the 

maximal ideal, k = A/m and x i ..... Xr~ m where r = dim(A). Then 

the following conditions are equivalent: 

2 
(i) The graded map k[T I ..... Tr] ~gr~(A) defined by Ti~ >x i mod m 

is an isomorphism. 

(ii) x I ..... x r generate m. 
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Proof. By (4.7), (i) implies (ii). Assume (ii) and let 

S = k[T l ..... Tr] and G = grm(A). Consider the exact sequence 

O )I ~S ~G ~O. Now for all positive integers s, 

~s+r-l. 
dimk(Is) + dimk(Gs) = dimk(Ss) = " r-I ) " Suppose I / O. Then for 

some positive integer h, there exists a nonzero homogeneous element 

u ~ I h and I s ) USs_h = Ss_ h. Therefore, for all s > h, 

.s-h+r-l. 
dimk(Is) I> dimk(Ss-h) = ~ r-I )" Hence, dimk(G s) ~< f(s) = 

s +r- I. s-h+r- I 
= ( r-I ) - ( r-I ). However, f(s) is clearly a polynomial of 

degree ~< r-2 = dim(A) - 2, contradicting (1.4) (cf. II,4.13) 

therefore,(i) holds. 

Propositionu ~(4.9). - A regular local ring A is a domain. 

Proof. Let m be the maximal ideal. By (4.8), gr~(A) is a 

domain and, by (II,l.15), N m n = O. It follows from (II,l.5) that A 

is a domain. 

Proposition (4.10). - Let A be a noetherian local ring, I 

an ideal of A and r = dim(A). Then the following conditions are 

equivalent: 

(i) A is regular and I is generated by s regular parameters. 

(ii) B = A/I is regular of dimension r-s and I is generated by 

s elements. 

(iii) A is regular and B is regular of dimension r-s. 

Furthermore, if these conditions hold, I is prime and any s 

generators are regular parameters. 

Proof. Let m be the maximal ideal of A, m' = m/I and 

k = A/m. Then the sequence 

0 )(m 2 + I)/m 2 ~m/m 2 ~m'/m '2 ~ 0 

is exact. Assume (i). Then dimk((m2 + I)/m 2) = s and 
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dimk (m/m 2 ) r, so dimk (m'/m '2 ) = = r-s On the other hand, by (4.7), 

dimk(m'/m '2) I> dim(B) and by (1.6) , dim(B) I> r-s~ so, dim(B) = r-s 

and B is regular, proving (ii) and (iii). 

Assume (ii). Since dimk(m'/m '2) = r-s and dimk(m2+I)/m 2) ~< s, 

dimk(m/m 2) <~ r. Hence, by (4.7), dimk(m/m 2) = r and A is regular. 

Thus, (iii) holds. 

Assume (iii). Then the above exact sequence implies that 

dimk((m 2 + I)/m 2) = s. Hence, there exist regular parameters 

x I .... ,x s among any set of generators of I. Let I' be the ideal 

generated by xl,...,x s. Then by (i)--~(ii), A/I' is regular of 

dimension r-s. Thus I' ¢ I and by (4.9), they both are primes of 

coheight r-s! hence I = I'. 

Proposition (4.11). - Let A be a noetherian local ring, m 

the maximal ideal and r = dim(A). Then A is regular if and only 

if m is generated by an A-regular sequence. Moreover, if x I ..... x r 

are regular parameters of A, then the sequence (x I .... x r) is 

A-regular. 

Proof. For i = O,...,r, let I. be the ideal generated by 
l 

x I ..... x i . Then, by (4.10), A/I i is regular! so, by (4.9), a domain. 

Hence, xi+ 1 is not a zero-divisor in A/I i and the sequence 

(x I ..... Xr) is A-regular. 

Conversely, suppose m 

(x I ..... Xs). By (3.15), s ~ r 

and A is regular. 

is generated by an A-regular sequence 

and, by (4.7), r ~ s. Hence, r = s 

Corollary (4.12). - A regular local ring is Cohen-Macaulay. 
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Corollary (4.12). - Let A, B be regular local rings. If A 

is a quotient of B, then A is regularly immersed (resp. a complete 

intersection) in B. 

5. Homological dimension 

Definition (5.1). - Let A be a ring and M an A-module. 

The projective dimension (resp. injective dimension) of M, denoted 

proj.dimA(M) (resp. inj.dimA(M)) , is defined as the infimum of all 

integers n such that there exists an exact sequence 

O >Pn ~''" >Po > M ---->O 

with all P. projective (resp. an exact sequence 
1 

O >M ~Qo ) "'" --->Qn -~O 

with all Qi injective). 

Proposition (5.2). - Let A be a ring and M an A-module. 

Then the following conditions are equivalent: 

(i) (resp. inj.dim(M) < n). 

(ii) (resp. ExtA(N,M) = O) for all i > n and all 

(ii') 

(iii) 

proj .dim (M) .<. n 

ExtA(M,N) = 0 

A-modules N. 

ExtA+I(M,N) = 0 

trivial. To prove the implication (ii') 

ExtI(R,N) ~ Extn+l(M,N) = O for all N, 

(resp. 

In any exact sequence 

O ;R ~Pn-i ~ "'" ~Po ~M .~O 

with all P. projective (resp. 
l 

O >M ~Qo ; " " " ~ Qn-i ~ R 20 

with all Qi injective) , R is projective (resp. injective). 

Proof. The implications (i)~ (ii) and (ii) ~(ii') are 

• >(iii) , note that 

hence, R is projective. 

ExtA+I (N ,M) = O) for all A-modules N. 
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Assume (iii) and construct an exact sequence 

0---~ R --~ Pn-I > ... >Po--~ M 20 

with all Pi projective. Then R is projective, so (i) holds. The 

injectivity statements follow dually. 

Lemma (5.3). - Let A be a ring and N an A-module. Then 

_ n+l 
inj.dim(N) ~ n if and only if ~xt A (A/I,N) = O for all ideals 

of A. 

Proof. Let 

0 )N ~Qo 

be an exact sequence with all 

to show that R is injective. 

I Ext~+l(A/I,N) O3 EXta(a/I,R) ~ = 

is surjective. Consequently, R 

) "'" --~ Qn-I >R >O 

Qi injective~ by (5.2), it suffices 

Now, for all ideals I, 

it follows that Hom(A,R) )Hom(I,R) 

is injective, ~[2],I,3.2). 

Definition (5.4). - Let A be a ring. The qlobal homoloqical 

dimension of A, denoted gl.hd(A), is the supremum of the integers 

proj.dim(M) as M runs through all A-modules. 

Remark (5.5). - It follows from (5.2) that gl.hd(A) is the 

supremum of all integers n ~or which there exist A-modules M, N such 

that Ext~(M,N) ~ 01 hence, gl.hd(A) is the supremum of the integers 

inj.dim(N) as N runs through all A-modules. 

Proposition (5.6).- Let A be a ring. Let n be the supremum 

of the integers proj.dim(M) as M runs through all finite A-modules. 

Then n = gl.hd(A). 

Proof. Clearly n ~ gl.hd(A). On the other hand, for all 

N, Ext~+l(A/I,N) = O for any ideal I; so by (5.3), A-modules 

inj.dim(N) ~ n. 
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Proposition (5~7) . - Let A be 

the residue field and M a finite A-module. 

satisfying the following conditions: 

Tor~+l(M,k) = 0 (i) 

(ii) Tor~(S,k) / O. 

Then r is equal to proj.dim(M). 

r = proj.dim(M), then (i) and (ii) hold. 

Proof. (ii) implies that proj.dim(M) ~ r. 

consider an exact sequence 

0 "  ~R --->Pr+ 1 • ... 

a noetherian local ring, k 

Let r be an integer 

Furthermore, if M / O and 

On the other hand, 

)R"~Ak >0 

Construct the exact sequence 

Ap ' (x) >R 

and consider the exact sequence 

kp (x')> R~Ak 

>R" ~ O 

with all Pi projective of finite type. 

TorA+l(M,k) = O, the following lemma implies R is free. 

Lemma (5.8). - Let A be a noetherian local ring, k the 

residue field and R a finite A-module. Then the following conditions 

are equivalent: 

(i) R is free. 

(ii) R is projective. 

(iii) R is flat. 

(iv) Torl(R,k) = O. 

Proof. The implications (i) ....... ~:(ii) , (ii) ----}(iii) , and 

(iii)---)(iv) are trivial. Assume (iv) and let x I .... ,Xp be elements 

' form a basis of R~Ak over k. of R whose images xl,... ,Xp 

> PO > M .......... >0 

A k Since Tori (R,) 
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Since (x') is an isomorphism by construction, R"/mR" -~ R"®Ak = O 

and, hence, by Nakayama's lemma, R" = O. 

Construct the exact sequence 

0 >R' >A p (x) >R • 70 

and consider the induced exact sequence 

TorA(R,k)____~R,~A k >k p .... {x'! > R~Ak- 

Since TorA(R,k) = 0 by assumption and since (x') is an isomorphism by 

construction~R'~Ak = O. Hence R' = 0 and A p )R is an isomorphism. 

Corollary (5.9). - Let A be a noetherian local ring and k 

the residue field. Then gl.hd(A) = proS.dim(k). 

Proof. The inequality gl.hd(A) ~> q = proS.dim(k) is clear. 

On the other hand, if q is finite, then, for all A-modules M of 

finite type, TOrq+l(k,M) = O~ so, q 9 proS.dim(M) by (5.7) 

whence, by (5.6), q >I gl.hd(A). 

Proposition (5.10). - Let A be noetherian local ring, m the 

maximal ideal and M a nonzero, finite A-module. Suppose x I ~ m is 

M-regular. Then proS.dim(M/riM) = proS.dim(M) + I. 

proof. Let MI= M/rIM. The exact sequence 

x 1 
0 ;M ------~ M >M 1 70 

yields an exact sequence 

x 1 
TorA (M,k)q ) TOrq (M,k) .... ~ TOrq (MI ,k) 2TOrq_ 1 (M,k) xl TOrq_ I (M,k) 

where k = A/m. Since x I ~ m, the first and last maps are zero. 

Take q = proS.dim(M) + i. Then, by (5.7), TorA(M,k) = 0 and 

TorA_I(M,k)~ ~ O, hence, TorA(Ml,k)~ / O. Now,take q = proS.dim(M) + 2. 
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Then TorA(M,k) = O and TorA_l(M,k) = O~ hence TorA(Ml,k) -- O. 

Therefore, by (5.7) , proj .dim (M) + i = proj.dim(M1). 

Theorem (5.11)_ (Auslander-Buchsbaum). - Let A be a regular 

local ring of dimension n. Then gl.hd(A) = n. 

Proof. Let xl,...,x n be a regular system of parameters of 

A and k the residue field. Then, by (4.11), x I .... ,x n is an 

A-regular sequence and k = A/(x, A+---+ x A). So, repeated application 
n 

of (5.10) yields proj .dim (k) = n + proj .dim (A) = n~ hence, (5.9) 

yields n = gl.hd(A). 

Lemma (5.12) . - Let A be a noetherian local ring and m the 

2 
maximal ideal. If every element of m - m is a zero-divisor, then 

m ~ Ass(A). 

Proof. We may assume m / O~ whence, by Nakayama's lemma, 

2 
m / m 2 By (II,3.5) , m - m ¢ ~ hence m ¢ (Up) U m 2 

(1.5), m ¢ p for some p ~ Ass(A) and, since m is maximal, m = p. 

Lemma (5.13). - Let A be a noetherian local ring and m the 

2 
maximal ideal. If a ~ m - m , then m/aA is isomorphic to a direct 

summand of m/am. 

Proof. Let I be an ideal of A such that a and I generate 

complementary (A/m)-subspaces of m/m 2. Then, by Nakayama's lemma, 

I + aA = m. If xa ~ I, then its residue class in m/m 2 is zero, 

so x ~ m! hence, the natural map m/aA ~ I/ (I N aA) ............ > m/am is an 

injection. It is split by the canonical surjection m/am )m/aA 

and thus m/aA is a direct summand of m/am. 

~e~a (5.14). - Let A be a noetherian local ring, m the 

maximal ideal and M a finite A-module. If a ~ m is A-regular 
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and M-regular, then proj.dim(A/aA) (M/aM) ~< proj.dimA(M). 

Proof. Clearly we may assume h = proj.dimA(M) is finite. If 

h = O, then by (5.8) , M is free and thus M/aM is a free (A/aA)- 

module! hence, the inequality holds. 

Suppose h ~ I. A surjection E = An-----gM yields a commutative 

diagram 

0 

0 

>N >E ~M • 0 

la la [ a 
>N bE ~M ~0 

f 
N/aN > E/aE ~ M/aM • O 

0 0 0 

By (5.2), proj.dim(N) = h-l. Furthermore, since a is A-regular, a 

is E-regular~ since a is also M-regular, multiplication by a is 

injective in all three columns, so by the nine lemma, f is injective. 

Hence by induction, proj.dim(A/aA) (N/aN) ~ h - I and therefore 

proj .dim(A/aA) (M/aM) ~ h. 

Theorem (5.15) (Serre). - If a noetherian local ring A has 

finite global homological dimension, then it is a regular local ring. 

Proof. Let m be the maximal ideal of A, k = A/m and 

r = rankk(m/m2). If r = O, then by Nakayama's lemma, m = O 

assertion is trivial. 

and the 

Assume r ~ I. Then k is not projective and thus 

2 
q = gl.hd(A) ~ I. Suppose each element of m - m is a zero-divisor 

in A. Then, by (5.12) m ~ Ass(A) and there exists an exact 
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sequence 

O >k ~ ~A ---~coker (i) .... ~0~ 

it yields an exact sequence 

0 ................. ~ Tor A (k ,k) 
q 

,,0, 

contradicting (5.7) and (5.9). 

2 
Therefore, there is an element a ~ m - m which is not a 

zero-divisor. Let A' = A/aA and m' = m/aA. Then rankk(m'/m '2) = 

= r - i. By hypothesis, proj.dimA(m) is finite~ so, by (5.i4) , 

proj.dimA, (m/am) is finite. Since by (5.i3) , m' is a direct 

summand of m/am, it follows from (5.2) that proj.dimA, (m') is 

finite. It follows from (5.9) that gl.hd(A') is finite and, by 

induction, A' is regular of dimension r - i. By (II,3.5) and 

(1.3) , dim(A') ~< dim(A) - i and thus dim(A) i> r. Hence, by (4.7) , 

dim(A) = r and A is a regular local ring. 

Proposition (5.16). - Let A be a noetherian ring and M an 

A-module. Then inj.dimA(M ) = sup{inj.dimA(%)} where m runs 

through all prime ideals (resp. maximal ideals) of A. In particular, 

gl.hd(A) = sup{gl.hd(A m ) }. 

Proof. By (IV,3.2), we have ExtAq (AIIAm,M m) = (Extq(A/I,M)) m 
m 

for every p r i m e  m a n d  i d e a l  I .  S i n c e  e v e r y  i d e a l  o f  A m i s  o f  

the form IA , the assertion follows from 411,3.3 and 3.10) and (5.3). 
m 

Definition (5.17). - A noetherian ring A is said to be 

regular if for each prime p of A, the local ring A is a regular 
P 

local ring. 

CQr0!lary (5.18). - Let A be a noetherian ring. Then the 

following conditions are equivalent: 
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(i) A is regular. 

(ii) A is a regular local ring for every maximal ideal m of A. 
m 

(iii) gl.hd(A) is finite. 

Theorem (5.19). - Let A be a regular local ring and M a 

nonzero, finite A-module. Then 

depth(M) + proj .dim (M) = dim(A). 

Proof. If depth(M) = O, then, by (3.11), the maximal ideal m 

is in Ass(M). Hence, there exists an exact sequence of the form 

O >k ~M---~M' ~O and it yields an exact sequence 

TOrq+l(M' ,k) , TOrq(k,k) ; TorA(M,k) . 

Let q = dim(A). By (5.11), TorA+I(M ',k) = O and, by (5.7) , (5.9) 

and (5.11), TorA(k,k) ~ O. Therefore, TOrq(M,k) / O, so 

proj .dim (M) I> q~ however, q = gl.hd(A) , so q = proj.dim(M). 

Assume r = depth(M) >I i. Then there exists x ~ m defining 

an exact sequence 

x 
O ~M >M >M 1 20. 

Since depth(M I) = depth(M) - I by (3.10) and since proj.dim(M 1) = 

= proj.dim(M) + I by (5.10), the assertion follows by induction. 

Proposition (5,20). - Let A be a noetherian ring and M a 

finite A-module. Then proj.dim(M) < r if (and only if) 

Extr+l(M,N) = O for all finite A-modules N. 
A 

with all P. 
1 

Proof. Consider two exact sequences 

O >R ~ Pr-I ~''" > PO 

O ~N ~ P ~R ~O 
r 

projectives of finite type. 

M >O 

Then Ext~(R,N) = 
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= Ext~+I(M,N) = O~ so, HomA(R,Pr) )HOmA(R,R) is surjective. There- 

fore, the second sequence splits and R is projective. 

Proposition (5.21). - Let A be a regular local ring, M a 

finite A-module and r an integer. Then proj.dim(M) ~ r if 

(and only if) Ext~(M,A) = O for all q > ro 

Proof. By (5.20), it suffices to show that Ext~+I(M,N) = O 

N. If r ~ gl.hd(A) , then Ext~+I(M,N) = O for all finite A-modules 

trivially and the proof proceeds by descending induction on r. 

Consider an exact sequence O--}P --gA p ~ N =~0. It induces an 

exact sequence 

Ext~(M,A p) ...... 9 Ext~(M,N) .... , Ext~+l (M,P). 

Thus, for all q > r, Ext~(M,A p) = 0 by hypothesis and Ext~+I(M,P) = 

= O by induction| hence, Ext~(M,N) = O. 

Corollary ~5.22 ) . - Let A be a regular local ring of dimension 

s and B a quotient of A of dimension s - t. Then B is 

Cohen-Macaulay if and only if Ext~(B,A) = O for all q > t. 

Proof. By definition and (3.15) , B is Cohen-Macaulay if and 

only if dim(B) ~ depth(B). However, by hypothesis, dim(B) = s - t 

and, by (5.19) and (3.16), depth(B) = s - proj.dimA(B)! the 

assertion now follows from (5.21). 



Chapter IV - Duality Theorems 

I. The Yoneda pairing 

_T_heorem (I.I) (Yoneda-Cartier). - Let C and C' be abelian 

categories and suppose C has enough injectives. Let T : C >C' 

be an additive, left exact functor. Then, for any two objects F, G 

in C, there exist pairings 

RPT(F) x Extq(F,G) ~RP+qT(G) 

for all nonnegative integers p and q. These pairings are 

0--functorial! namely, they are functorial in F and G and are 

compatible with connecting morphisms induced by short exact sequences. 

Proof. Choose injective resolutions 0 .... >F ~Q*(F) and 

O )G ~Q*(G), and define a complex of abelian groups 

Hom* (Q* (F) ,Q* (G) ) as follows: Let Homq(Q*(F) ,Q*(G)) be the group 

of all families u = (Up)p~ Z of morphisms Up: QP(F) .... ~QP+q(G) 

(not assumed compatible with the boundary). Define 

0 : Homq(Q*(F),Q*(G)) ,Homq+I(Q*(F) ,Q*(G)) by ~(u) = du + (-l)qud. 

Then : 

(i) ~2 = O. 

(ii) If ~(u) = O, then u anti-commutes with the boundary. 

(iii) If v = ~(u) , then v is homotopic to zero. 

(iv) Hq(Hom*(Q*(F) ,Q*(G)) is the group of homotopy classes of 

morphisms which anti-commnte with the boundary 

Each u = (Up) ~ Hom q (Q* (F) ,Q* (G)) induces a morphism 

T(u) : TQ*(F) ~TQ*(G) of degree q. If ~(u) = O, then by (ii), 

T(u) induces a morphism HP(T(u)): RPT(F) ~ RP+q(G) for each p. If 

u = ~(w) for some w, then H*(T(u)) = 0 by (iii) ~ hence, H*(T(u)) 
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depends only on the homotopy class of u. Therefore, there exist 

pairings RPT(F) x Hq(Hom*(Q*(F),Q*(G)) )RP+qT(G) ~ so the following 

lemma establishes the existence assertion. The O-functoriality is 

straightforward and its proof is omitted. 

Lemma (!.2). - Let C be an abelian category, F and G two 

objects of C and O ,F e~Q*(F) and O ~G ~Q*(G) injective 

resolutions. Then the morphism # : Hom*(Q*(F) ,Q*(G))--gHom(F,Q*(G)) , 

defined by ~(u) = uoe, induces an isomorphism 

Hq~ : Hq(Hom*(Q*(F),Q*(G))) ~ >Extq(F,G) 

for all q 90. 

Proof. To construct Hq(~) -I let a' E Extq(F,G) and choose 

a representative a ~ Hom(F,Qq(G)) of a'. Since d o a = O, a 

factors through ker(d q) and yields a diagram with exact rows 

Q1 
O )F ~ QO(F) > (F) > ... 

1 ' ! 

~b a ~ O Ibl 

q Qq+l 
0--~ ker (dq) i~ Q (G) > (S) 3... 

Since the Qq(G) are injectives, there exists a morphism 

Q* b : (F) ~Q*(G) , of degree q, which is unique up to homotopy 

([2] ,V,2.2) . 

If a = d o s, then s may be extended to a homotopy (Sp) 

between b and O. Therefore, up to homotopy, b depends only on a' 

If b' is the homotopy class of ((-1)Pbp), then the morphism 

a'| )b' is clearly inverse to Hq(~). 

PrQPosition (!.3). - Let C, C' be abelian categories and 

S, T : C )C' additive functors. Suppose C has enough injectives 
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and S T are left exact. If e* , : R*S )R*T is a ~-morphism of 

degree r, then, for any two objects F and G, the diagram of 

Yoneda pairings 

commutes. 

RPs(F) x Extq(F,G) 

P ~; (F) ~ id 

RP+rT(F) x Extq(F,G) ..... 

> RP+qS (G) 

i P+q(G) 

> RP+q+rT (G) 

Proo____.~f. For q = 0 and all p 9 O, the diagram 

RPs(F) x Hom(F,G) > RPs(G) 

RP+rT(F) :- Hom(F,G)- > P+rT(G} 

commutes because e p is a morphism of functors. 

Let O L. >G --9 Q ~ G .... ~O be an exact sequence with Q in- 

jective. Consider the diagram 

O 

RPs (F) xExt q (F,G) - ~ RP+qS (G) 

RP+rT (F) xExt q (F, G) I > RP+q+rT (G) 

RP+rT (F) XExtq-1 (F ,G- ) ........ > RP+q+r-IT (G,,) 
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By induction on q, the front face commutes; by (i.i) , the horizontal 

faces commute! and, by hypothesis, the end faces commutes; whence, 

the assertion. 

2. The spectral sequence of a composite functor 

Lemma (2.1). - Let C be an abelian category with enough 

K o injectives and let O ~ ~K i )... be a complex in C. Then 

there exists a double complex L**, called a Cartan-Eilenberq resolu- 

tion of K*, which gives rise to injective resolutions as follows: 

O ) K p ~ L p'O ~ L p'I • .... 

O ) zP(K) --4zP'O(L) --~ zP'I(L)--~ .... 

O - > BP(K) --~ BP'O(L) -~ BP'I(L) --, .... 

O > HP(K) --~ BP 'O (L) --9 HP'I(L) --4 .... 

Proof. The proof is elementary ([2],XVII,I.2). 

Theorem (2.2). - Let C, C' and C" be abelian categories and 

suppose C and C' have enough injectives. Let T : C ,C' and 

S : C' ~ C" be additive functors and suppose S is left exact. 

Assume that T takes injectives into S-acyclics, i.e., that 

(RqS) (TQ) = O for all q > O if Q is injective. Then, for any 

object A of C, there exists a spectral sequence 

E p'q = Rqs(RPT(A)) ---~ E p+q = RP+q(soT) (A) . 

Proof. Let O > A ~Q* be an injective resolution and 

O >T(Q*) ~J*,* a Cartan-Eilenberg resolution (2.1). Associated 

to the double complex 

O >S(J~'I) > S(j~'I) > ... 
! ! 

0 ~s(jO'O) ---> S(jI'O) > ... 

s(J* ,*) To o~i) > 
O ---->ST(Q ) > ST( ... 

O O 
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there are two spectral sequences with the same abutment. 

In the first spectral sequence IE~ 'q = H~ (S(J p'* 
I )) = 

= RqS(T(QP)). However by assumption RqS(TQ p) = O for q > O; so, 

IE~ 'q = O for q > O. Since S is left exact, IE~ 'O = H~(SoT(Q*)) = 

= RP(soT) (A) . In the second, II-l~q'P = H~ (s(J*'p)) = SH~ (J*'p) ! for, 

O ~B q'p ,Z q'p ~H q'p = B~(J *'p) is 0 splits since B q'p 

injective. However, H~(T(Q*)) = RqT(A) and 

O--+H~(T(Q*)) ....... >Hq'*(J *,*) is an injective resolution, (2.1). Thus 

Eq'P = (S(H q * * * II 2 I ' (J ' )) = RPs(RqT(A))' completing the proof. 

Lemma (2~3~. - Let X be a ringed space. Then the category of 

Ox-MOdules has enough injectives. 

Proof. Let F be an Ox-MOdule and let Q be the Ox-MOdule 

defined by Q(U) = -module x~U Ox where Qx is a fixed injective 0 x 

containing F and U is any open set of X. Then Q is injective 
x 

and contains F. 

PropositiQn (2.4). - Let X be a ringed space and F, G two 

Ox-MOdules. Then there exists a spectral sequence 

HP (X, EXtOqx (F ,G) ) }ExtPx+q (F ,G) . 

Proof. F(X, Hom O (F,G)) = HOmox(F,G) ! so, the assertion 
X 

follows from (2.2) in view of (2.3) and the following lemma. 

Lemma (2.5). - Let X be a ringed space and F, Q two 

Ox-MOdules. If Q is injective, then HOmox(F,Q) is flasque. 

Proof. Let U be an open subset of X and f ~ F(U,HOmox(F,Q)). 

Let F u be the extension of FIU by zero to all of X. Since Q 

is injective, the map F u ) Q induced by f extends to an element 

g ~ F(X,HOmox(F,Q)). Then gIU = f. 
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Corollary (2.6). - Let X be a ringed space and E, G two 

Ox-MOdules. If E is locally free of finite type, then Ext~ v (E,G) = 
X 

= HP(x,HOmox(E,G)) = HP(x, G ~ E v) where E v= HOmox(E,Ox). 

Proof. Since E is locally free, the functor HOmox(EJ- ) is 

exact. It follows that Ext~ (E,G) = O for all q > O. Hence, the 
X 

spectral sequence of (2.4) degenerates and ~2 'O = HP(x,HOmox(E,G)) is 

equal to EXt~x(E,G). The second equality follows from (3.4). 

Remark (2.7). - Let i : X~ )P be a closed immersion of ringed 

two Ox-MOdules and G an Op-MOdule. Suppose E 

Then it is easily seen that there exist canonical 

spaces, E and F 

is locally free. 

isomorphisms. 

(2.7.1) HOmox(F, HO~p(E,G)) ,HOmop(F ~ E,G) 

(2.7.2) HOmox(F, HOmop(E,G)) ~ )HOmop(F ~ E,G) 

Lemma (2.8). -Let i : X t ;P 

spaces, Q an injective Op-MOdule and 

be a closed immersion of ringed 

E a locally free Ox-MOdule. 

Then J = HOmop(E,Q) is an injective Ox-MOdule. 

Proof. Let O )F t ~F be an exact sequence of Ox-MOdules. 

Since E is locally free and Q is injective, the sequence 

HOmop(F ® E,Q) )HOmop(F' ~ E,Q) ~O is exact. Thus by (2.7.1) , 

HOmop (F,J) JHOmox(F' ,J) ~0 i s  exac t .  

Proposition (2.9). - Let X' ~P be a closed immersion of 

ringed spaces, E and F two Ox-MOdules and G an Op-MOdule. 

Suppose E is locally free of finite type. Then there exist 

spectral sequences 

(2.9.1) EXtPx (F, Extoqp (E,G)) 

(2.9.2) EXtPx (F, Extqp (E,G)) 
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Proof. Apply (2.2) to the functors HOmop(E,-) and HOmox(F,-) 

(resp. HQmox(F,-)). Then (2.7.1) (resp. 2.7.2) and (2.8) yield 

(2.9.1) (resp. (2.9.2)). 

Remark (2.10) (Leray spectral seauencg) . - Let f : X )Y be 

a morphism of ringed spaces. Then the functor f, is left exact. 

Furthermore, if Q is an injective Ox-MOdule, then Q and f,Q 

are flasque. By (2.3) and (2.2), there exists a spectral sequence 

HP (y, Rqf,F) ', } HP+q (X,F) . 

3. Complements on EXt~x (F,G) . 

Lemma (3.1). - Let A be a ring, B a flat A-algebra and M,N 

two A-modules. Suppose M has a presentation 

Eq > ... ~Eo---->M -->O where the E i are finite, free A-modules. 

Then the canonical B-homomorphisms 

Ext~(M,N)~B .... 'Ext~(M~AB,N~AB) 

are isomorphisms for O ~ r < q. 

Proof. Consider the commutative diagzam with exact rows, 

0 > Horn A(M,N)~DAB > Horn A (E 0 ,N) ~DAB 

0 " ~I-IOmB(NZ~AB,N®AB)---~HOmB(No~AB,N~A B) 

since g and h are clearly isomorphisms, f 

> Hom A ( E i ,N) ®A B 

Horn B ( EI~AB, N~AB) , 

is an isomorphism. 

Let M' = ker(Eo---~.gM) and consider the commutative diagram 

with exact rows, 

~xt~ -I (R 0,m®A~ -- > E~t~ -~ c~' N1%~ 

I L 
(%®A ; Extq B ( M~AB, N~AB) ~O. 
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Thus, the assertion follows by induction. 

Proposition (3.2). - Let X be a locally noetherian scheme 

and F, G two coherent Ox-MOdules. Then, for all q: 

(i) Ext~ (F,G) is coherent 
V 

X 

(ii) If X = Spec(A) , F = ~ and G = N, then Ext~ (F,G) = Ext~(M,N) ~ 
X 

(iii) For any point x ~ X, EXt~x(F,G) x = EXt~x(Fx,Gx)- 

(iv) If X is a scheme projective over a noetherian ring k, then 

Ext~ (F,G) is a finite k-module. 
V 

X 

Proof. Clearly, (i) follows from (ii) ~ (ii) from (3.1) ~ (iii) 

from (ii) and (3.1). Furthermore, (iv) follows from (i) , (2.4) and 

part (i) of the following proposition. 

Proposition ,3.3~ ISerre~ [7] III, 2.2=2). - Let k be a 

noetherian ring, X a projective k-scheme and F a coherent Or-MOdule. 

Then: 

(i) The k-modules Hq(X,F) are of finite type. 

(ii) There exists an integer m O 

all q > O, Hq(X,F(m)) = O. 

(iii) There exists an integer m O such that for all m ~ m O, 

HO (X,F (m)) generates F(m) . 

such that for all m ~ m O and 

Proposition (3.4). - Let X be a ringed space, E, F, G three 

Ox-MOdules and E v = HOmox(E,Ox). Suppose E is locally free of 

finite rank. Then the canonical homomorphisms 

EXtqx (F ,G)%X Ev ) Extq X (E ~OxF ,G) 

are isomorphisms for all q ~ O. 
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Proof. The map Ext~ (F,G) ~ E v )EXt~x(Ev ~ F,G) is clearly 
X 

n Since E is an isomorphism for E = O X and hence also for E = O X . 

locally free and the map is globally defined, it is therefore an 

isomorphism. 

4. Serre duality 

Proposition (4.1.) (Serre: [7] III. 2.1.12). -Let k be a 

ring P = i~k(= Proj (k[T O ..... Tn])) . Then 

(i) Hq(P,Op(r)) = O for all r and all q / O,n. 

q Hq(P ,Op (r)) 

- n - 1  

(ii) The canonical homomorphism k[T O, .... Tn] .......... >~qO(p,Op(q)) is 
q 

bijective. 

(iii) Hn(p,Op(-m-n-l)) is the free module on symbols ~Po' " " " 'Pn where 

the Pi are nonnegative integers and 7pi= m. Furthermore, 

Ti~Po = ~Po' if Pi > O or = O if pi = O. 
..... Pn .... Pi -I .... 'Pn 

n 
Theorem (4.2). - Let k be a field, P = Pk and Wp= Op(-n-l). 

Then Xoneda pairing ~(P,F) x Ext 0 r(F,wp) >Hn(p,Wp) is nonsingular~ 

that is, there is an isomorphism ~ .- Hn(p,Wp) ~ >k and the induced 

map Yr(F): EXtopr(F,w P) ,Hr(p,F) * is an isomorphism of 0-functors in F. 

Proof. With F = Op(-m-n-l) and r = n, the pairing becomes 

Hn(p,Op(-m-m-1)) × HO(p,Op(m)) ~Hn(p,Op(-n-l)) 

qo Tqn ) qo qn 
.... ' ' "" ~To " " Tn ~Po ( ~Po Pn TO " " ' .... ' Pn 
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qo qn 
. . . . . .  = ~O ..... O if qi = Pi for all i and However, TO " Tn ~Po' 

Pn 

= O otherwise. Hence, the bases {T~ O ... T~Olxqi= m} and 

.... IXpi= m} are dual and the pairing is nonsingular in this 
{ ~ Po 'Pn 
case. 

In general, by (3.3) , there is a presentation 

E l ~ E O .... ~' F ; O 

where the E. l are of the form Op(-m) q for suitable integers 

m, q > O. Consider the diagram 

O ~ HOmop (F ~ . . . p )  

]y (F) 
n 

o - > ~ ( P , F ~ * . .  - 

• ; rlOmop (E 0 . ,,~p} 

v ( E O) 

~n(P,p0 ). 

Homop (l~i ""p) 

Yn(E! ) 

) Hn(p ,E 1) * 

where the Yn arise from the isomorphism ~ : Hn(p,Wp) T }k 

defined by ~(a~o,..., O) = a. It results from the preceding paragraph 

that the Yn(Ei) are isomorphisms. The diagram is commutative by 

the functoriality of the Yoneda pairing and its bottom row is exact 

by the right exactness of ~(P,-). Hence, Yn(F) is an isomorphism. 

where 

Consider an exact sequence of the form O- }G "E )F 

E = Op (-m) q for suitable integers m, q > O. The diagram 

)O 

. n-r-i ~ EXtO-r (F __~Extn-r (E ,{L~p ) Exto -r-l(E,~P) ~EXtop (G,.,p) 'J~P) Op 

Yr+! (~) Yr+l (G) Yr (F) Yr (E) 

H r+i (P ,E) * H r > Hr+I(p,G) * ) Hr(p,F) * ) (P,E)* 

is commutative by the O-functoriality of the Yoneda pairing. If 

r < n, then yr+l(E) and Yr+l(G) are isomorphisms by descending 

induction and H/(P,E) = O by (4.1). Finally, it follows from (2.6) 
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and (4.1) that Ext~r(E,~p) = Hn-r(P,~p(m)) q = O. The proof of 

Serre duality is now complete. 

5. Grothendieck duality 

Lemma (5..1). - Let k be a field, P a regular k-scheme of 

pure dimension n and X a closed subscheme of P, ~p an invertible 

sheaf on P. Suppose X has pure dimension r (i.e., every 

irreducible component has dimension r). Then Extq v (Ox'WP) = 0 for 
P 

q< n-r. 

Proof. By (III,3.13), Ext~ (Ox,~ P) = O for q < d = 
P 

= x~xinf{depth(Wp'x))" Since Wp is invertible, ~p,x= Op, x and, since 

Op, x is regular, depth(Op,x) = dim(Op, x) by (III,4.12). Therefore, 

d = n-r and the proof is complete. 

Lemma (5.2). - Under the conditions of (5.1), there exists a 

8-morphism e* EXtOx ( ....... 9EXtOp : ,w x) (- ,~p) of degree r where 

n-r 
w x = ~XtOp (Ox,m P) 

proof. Let F be a coherent Ox-MOdule and consider the 

spectral sequence (2.9.1) 

E2t,s = Extt X(F,ExtOP(O x,wP)) 
, ~ . s+t 
.. ~:X~Op (F,Wp) . 

t,s 
By (5.1) , E 2 = 0 for s < n-r. 

n-r 
O 

>t 

Let er-P(F) : EXtoxP(F,~x) P(F,~p) be the edge homomorphisms. 
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Given an exact sequence of Ox-MOdules O 

we deduce an exact sequence of double complexes 

O )Hom(F",J ' ) ) Hom(F,J*'*) }Hom(F',J '*) 

~F t >F )F" )O, 

)O, where J ' 

is as in (2.2), and thence a cohomology triangle of spectral sequences 

Ext O (F",Ext O (Ox,m P)) )EXtOx(F,EXtOp(OX,m P)) x / 
EXtOx(F',Ext OP(O x,u)P)). 

It follows that e* is a map of 0-functors. 

Lemma (5.3). - Under the conditions of (5.2) , if F is a 

coherent Ox-MOdule, then the following diagram commutes: 

.r-p (F ,,.X ) HP(X,F) >. EXtOx 

cr-P(F) :- id 

(P ×  Xto P (r . p )  

H r (X ,,,.,X ) 

) H n (p ,.~p) 

n-r 
where i is the map induced by eO(~X) (id X ) ~ EXtOp (WX'~P) 

Yoneda pair ing.  

r-p 
Proof. Given f ~ EXtOx (F,Wx) , consider the diagram 

via the 
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HP(x,F) × EXto-P(F,Wx) 
f./ i Xl  Hr(X  xl 

Hr(X< ~ H~:~/(wfi~ ) O X  |"r-P(F) ~ ! 

x x x I >r( i 

eO (~X) $ $ n 
id , ~ , / PHP(P'F) × EXto-P(F'~P) .... -i-- -~Hn(~' ) 

f ~ ~ /  
/_/ / 

H r(P,i,~ X) > Ext~pr(wx,W P) ~ Hn(p,~p) 

where the horizontal maps f* are induced by f via Yoneda pairing 

and the rows are Yoneda pairings. If a ~ HP(x,F) , then <a,f> = 

= <f*(a) ,id X> and <a,f (eO(~X) (id X))> = <f*(a) ,eO(~X) (idwx)> by 

(I.I). By (5.2) and (1.3), the darkened square commutes; whence, 

the assertion. 

Theorem (5.4). - Let k be a field, P = ~k, and 
n 

Op(-n-l). ~p= 

Let X be a closed subscheme of P of pure dimension r and F a 

coherent Or-MOdule. Then for every integer s ~ r, the following 

conditions are equivalent: 

(i) Let ~p: Hn(p,~p) >k he a k-linear isomorphism and 

~X = nP °i" Then the corresponding map EXt~xP(F,w x) )HP(x,F) * 

is an isomorphism for r-s ~ p ~ r. 

(ii) HP(X,Ox(-m)) = O for large m and for 

(iii) Ext~-P(Ox,Wp) = O for r-s ~ p < r. 
Up 

r-s~< p<r. 

Proof. Assume (i). Then HP(X,Ox(-m)) = O if (and only if) 

OxP (Or (-m) 0 - p  Ext ,~X ) = O. However, by (2.6) , Ext (Ox(-m) ,w x) = 
X 

= Hr-P(X,~x(m)) and by (3.3,(ii)) , Hr-P(X,wx(m)) = O for large m. 

Thus (ii) holds. 
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Since, by (3.4), Ext q (Ox(-m) ,Wp) = Ext q (0 ,~ ) (m) it 
p Op X P ' 

follows from (3 3,(ii)) that the spectral sequence of (2.4). 

Hn-p-q(P,EXtqp(Ox(-m) ,~p)) ) EXtopP(Ox(-m) ,~p) 

degenerates and yields 

n-p 
HO(p'Extn-P(o'----Up A'~-)~ (m)) = EXtOp (Ox(-m) ~Wp) . 

It therefore follows from (3.3,(iii)) and Serre duality (4.2) that 

(ii) and (iii) are equivalent. 

Assume (iii). Then in the spectral sequence (2.9.1) 

4 -  • n-p 
t,q = EXttxq(F,EXtqp(OX,~p)) 1,:XtOp (F,~p) E 2 

where t = n-p-q, we have E2'q = O for n-r < q ~< n-r+s and for 

q < n-r by (5.1). 

n-r+s+l 

n-r 

q 

-> t 

Therefore, for t = r-p < s+l, the edge homomorphism er-P(F) is an 

isomorphism. However, by (5.3) , the diagram 

Ext~ -P (F ,<~J×) -- ~H p (x,F) * 

~ r - p  (F} i d  

EXto P >HP ca,F) * 

is commutative. Hence, (i) results from Serre duality (4.2). 
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Coro1~ry (5.5). - Under the conditions of (5.4), the map 

HOmox (F ,~ X ) ~Hr (X,F) * 

is always an isomorphism. 

Corollarv (5.6J'. - Under the conditions of (5.4), the map 

Ext r-p(F,w ) )H p(X,F)* 
O X A 

is an isomorphism for all p if and only if X is Cohen-Macaulay. 

Pr~. The assertion results immediately from (III,5.22), 

(5.4) and ( 3 . 2 ) .  



Chapter V - Flat Morphisms 

I. Faithful flatness 

Let C, C' be categories and T : C ) C' a functor. Then 

T is said to be faithful if, for all M, N ~ C, the canonical map 

Hom(M,N) >Hom(TM,TN) is injective. If C, C' are additive and 

T is additive, then clearly T is faithful if and only if, for all 

maps u : M )N, T(u) = O implies u = O. 

Proposition (I.i). - If C, C' are abelian categories and 

T : C >C' is an additive functor, then the following conditions 

are equivalent: 

(i) T is exact and faithful. 

(ii) T is exact and, for all N ~ C, TN = 0 implies N = O. 

(iii) A sequence N' > N )N" in C is exact if and only if 

TN t -TN ..... ~TN" is exact. 

Proof. Assume (i). Then TN = 0 implies T(idN) = O; hence, 

idN= 0 and N = O; t~us, (ii) holds. In (iii), suppose 

TN' Tu ~ TN Tv )TN" is exact. Then Tvu = TvTu = O; so, vu = O 

by (i). Let I = im(u), K = ker(v) , i : I )K and K' = coker(i). 

Since T is exact, it follows that TK' = O; so, K' = O by 

(i) ..... >(ii). Thus, N' )N----,N" is exact and (iii) holds. 

Let u : N' >N be such that Tu = O. If (iii) holds, 

consider the map v : N ~coker(u). Tv is an isomorphism, so v 

is an isomorphism and u = O; hence, (i) holds. If (ii) holds, 

consider I = im(u). T(I) = O, so I = O and u = Os hence, (i) 

holds. 
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Corollary (1.2). - Under the conditions of (I.I), suppose 

there exists a family {N } of objects of C such that, for each 

nonzero object N of C, there exist exact sequences O ~N' ~N 

and N' ~N~ 70 for suitable N' and N~. Then T is exact and 

faithful if and only if T is exact and TN~ ~ 0 for all MS. 

Definition (1.3). - Let A be a ring. An A-module M is said 

to be faithfully flat over A if the functor M~ A- is exact and 

faithful. 

Proposition (1.4). - Let A be a ring and M an A-module. 

Then the following conditions are equivalent: 

(i) M is faithfully flat. 

(ii) M is flat and, if N is an A-module such that M~AN = O, then 

N =0. 

(iii) M is flat and, for all maximal ideals m, M~A(A/m) ~ O. 

(iv) A sequence of A-modules N' >N ~N" is exact if and only if 

M~AN' ~ M~AI~ ~>M~gAN" is exact. 

Proof. Let N be a nonzero A-module. Then there exists an 

injection of the form 0 )A/I ~N where I is a proper ideal of 

A; further, there exists a surjection A/I ~A/m ~O where m is 

a maximal ideal Therefore, the equivalence follows from (i.l) and 

(1.2) . 

Proposition (1.51 . - Let A JB be a ring homomorphism, M, N 

two A-modules and P a B-module. Then: 

(i) If M and N are flat (resp. faithfully flat) over A, then 

M~AN is flat (resp. faithfully flat) over A. 

(ii) If M is flat (resp. faithfully flat) over A, then M~AB is 

flat (resp. faithfully flat) over B. 
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(iii) If B is flat (resp. faithfully flat) over A and P is flat 

(resp. faithfully flat) over B, then P is flat (resp. faith- 

fully flat) over A. 

(iv) If B is faithfully flat over A and M~AB is flat (resp. 

faithfully flat) over B, then M is flat (resp. faithfully 

flat) over A. 

Proof. The assertions result easily from the following formulas, 

functorial in R: (M~AN)~AR = M~A(N~A R) ~ (M~AB)~BR = M~AR ~ P~B R = 

= P~(B~AR)~ and (M~AR)~AB = (M~AB)~(R~AB) . 

proposition (1.6) . - Let ~ : A )B be a local homomorphism 

of rings and M a B-module of finite type. Then M is faithfully 

flat over A if (and only if) M is flat over A and M / O. In 

particular, B is faithfully flat over A if (and only if) B is 

flat over A. 

Proof. Let m (resp. n) be the maximal ideal of A (resp. B). 

By (1.4), it suffices to show that M~A(A/m) ~ O. However, if 

M~A(A/m) = O, then nM = M~ so, by Nakayama's lemma, M = O. 

Lemma (1.7). - Let A be a ring and M an A-module. Then M 

is flat if (and only if) Tor~(M,A/I) = O for all ideals I. 

Proof. If N is an A-module generated by r elements, there 

exists a submodule N' of N generated by r-I elements such that 

N/N' = A/I for some ideal I. The sequence 

Tor~(M,N') .... ,Tor~ (M,N) ,Tor~ (M,N/N') 

by induction on r that Tor~(M,N) = O is then exact. It follows 

for all A-modules N of finite type. Finally, since any A-module is 

the inductive limit of its submodules of finite type and since the 
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A A 
functor Tori(M,- ) commutes with inductive limits, Tor~(M,N) = 0 

for all A-modules N. 

Lemma (1.8). - Let A be a ring and M an A-module. For any 

ideal I of A, Tor~(M,A/I) = 0 if and only if the canonical sur- 

jection I~AM ~ IM is bijective. 

Proof. The assertion results immediately from the exact sequence 

o .....  Tor (M,A/I) 

Theorem (1.9). - Let % : A )B be a ring homomorphism. Then 

the following conditions are equivalent: 

(i) B is faithfully flat over A. 

(ii) ~ is injective and B/~(A) is flat over A. 

(iii) B is flat over A and, for any A-module M, idM~ : M----~MGAB 

is injective. 

(iv) For any ideal I of A, the natural map I~AB )IB is 

-I 
bijective and ~ (IB) = I. 

Proof. Assume (i) and consider the sequence 0 > N --9M-~eM~AB 

where N = ker(u). Then the sequence O >N~AB >M~AB ~idB>M~AB~AB 

is exact and u~id B has a left inverse induced by the canonical map 

B~AB )B, hence, N~AB : O. 

If the sequence 0 

yields an exact sequence 

Thus N = 0 and (iii) holds. 

A ~ )B >B/~(A) ~0 is exact, it 

O ~Tor~(M,B) ...... ~Tor~(M,B/@(A))----+M >M~AB 

for all A-modules M. It follows that (ii) and (iii) are equivalent. 

Assume (iii). By (1.8), I~AB 91B is bijective! 

so, 0 ~A/I >B/IB =(A/I)~B is exact and it follows that 

@-I(IB) = I. Thus, (iv) holds. 
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Finally, assume (iv)~ by (1.8) , Tor~(B,A/I) = 0 and,thus, by 

-1 
(1.7) , B is flat. If m is a maximal ideal of A, then ~ (roB) = m 

implies mB / B; so O / B/mB = B~A(A/m). By (1.4), B is faithfully 

flat over A. 

Proposition (1.19) . - Let A be a noetherian ring and q an 

ideal of A. Then A = hi m A/q r is a flat A-module. Furthermore, A 

is faithfully A-flat if and only if q ¢ rad(A). 

Proof. The functor MI ~A~A M is exact for finite A-modules 

M by (II,l.17 and 1.18). If there were an injection N' )N such 

that N'~AA )N~A~ is not injective, then there would be a sub- 

A 

injection M' ~M of finite submodules such that M'~AA .... J M~A~ is 

not injective~ hence A is flat. 

If m is a maximal ideal of A, then, by (II,l.18) , 

A~AA/m = (A/m) ̂  = lim, A/(qr+ m)-0 so, A~AA/m / O if and only if 

q ( m. Therefore the last assertion follows from (1.4). 

2. Flat morphisms 

Definition (2.1). - Let f : X }Y be a morphism of local- 

ringed spaces and F an Ox-MOdule. Then F is said to be flat over 

Y a_~t x ~ X if F x is Of(x)-flat, to be flat over y ~ Y if F 

is flat over Y at every x ~ f-l(y) , to be flat over Y if F is 

flat over every y ~ Y and to be faithfully flat over Y if F is 

flat over Y and F~k(y) ~ O for every y ~ Y. 

Proposition (2.2). - Let f : X ~Y be a morphism of affine 

schemes and F a quasi-coherent Ox-MOdule. Then F is flat (resp. 

faithfully flat) over Y if and only if M = F(X,F) is flat (resp. 

faithfully flat) over A = F(Y,Oy). 
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Proof. Given a sequence O )N' >N of A-modules, the 

sequence O )M~AN' )M~AN is exact if (and only if) the sequence 

O )M®Ov ~'- )~Do, N is exact. Thus, if F = M is flat, then M is 

is flat~ further, if F is faithfully flat, then M is faithfully 

flat by (1.4). The converse results from the following lemma. 

Lemma (2~3). - Let A be a ring, B an A-algebra and S 

(resp. T) a multiplicative set in A (resp. B) such that S maps into 

T. If a B-module M is flat over A, then T-IM is flat over S-IA. 

Proof. If N is an (S-IA)-module, then T-IM~ _±A N 
S 

-I -IM~ S IA = T (M@AN) ~ hence, the functor T _ _ is the composite of the 

exact functors M~ A_ and T -l-. 

Proposition (2.4). - Let f : X )Y be a morphism of schemes 

and F a quasi-coherent Ox,MOdule of finite type. Then F is 

faithfully flat over Y if (and only if) F is flat over Y and 

f(Supp(F) ) = Y. 

Proof. It suffices to show that F~oyOy / O if and only if 

F~oyk(y) / O. However, if F~k(y) ~ O, then, clearly, F~Oy ~ O~ 

conversely, if F~O ~ O, then there exists a point x ~ X such that 
Y 

f(x) = y and F x / O. Therefore m F c m F / F x by Nakayama's 
y x x x 

lemma~ so, F~Oyk(y) / O. 

Definition (2.5). - A morphism of schemes f : X )Y is said 

to be quasi-flat if there exists a quasi-coherent Ox-MOdule F of 

finite type which is flat over Y and whose support is X. Further 

f is said to be quasi-faithfully flat if f is quasi-flat and sur- 

jective. Finally, f is said to be flat (resp. faithfully flat) if 

O x is flat over Y (resp. O x is flat over Y and f is surjective) 
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Corollary (2.6). - Let f be a quasi-flat morphism of schemes. 

Let x ~ X and y = f(x). Then for all generizations y' ~ Spec(Oy) 

of y, there exists a generization x' of x such that f(x') = y'. 

Proof. We may assume X = Spec(O x) and Y = SpeC(Oy). Let F 

be the given Ox-MOdule. By (1.6), F is faithfully flat over Oy, so 

the assertion follows from (2.4) 

ProDosition (2.7) (Le sorite for flat morDhisms). - 

(i) An open immersion is flat (resp. quasi-flat). 

(ii) The composition of flat (resp. faithfully flat) morphisms is 

flat (resp. faithfully flat). 

(iii) Any base extension of a flat (resp. faithfully flat, quasi-flat, 

quasi-faithfully flat) morphism is flat (resp. faithfully flat, 

quasi-flat, quasi-faithfully flat). 

(iv) The product of flat (resp. faithfully flat) morphisms is flat 

(resp. faithfully flat). 

Proof. Assertion (i) is trivial~ (ii) follows from (l.5,(iii)) ~ 

(iii) , from (l.5,(ii)) and (II,2.7) | and (iv), from (ii) and (iii). 

Proposition (2.8). - Let X and Y be locally noetherian 

schemes, f : X )Y a finite morphism and F a coherent Ox-MOdule. 

If F is flat over y ~ Y, then f,F is locally free at y. 

Proof. Since f is affine, (f,F)y is equal to M = F(f-l(y),F). 

By (2.2), M is flat over O . Further, M is finite over the 
Y 

noetherian local ring 0 . Therefore, by (III,5.8) , (f,F) is free. 
Y Y 

Definition (2.9) . - Let X be a scheme and Y a closed sub- 

scheme of X. The codimension of Y in X, denoted codim(Y,X), is 

defined as the infimum of the integers dim(Ox,y) as y runs through Y. 
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Proposition (2.10). - Let f : X )Y be a surjective morphism 

of locally noetherian schemes, Y' a closed irreducible subscheme of 

Y and X' an irreducible component of f-l(y,). Then: 

(i) If fix,: X' )Y' is generically surjective, then 

codim(X',X) ~ codim(Y',Y). 

(ii) If f is quasi-flat, then fix' is generically surjective and 

c0dim(X',X) = codim(f-l(Y') ,X) = codim(Y',Y). 

Proof. Let z be the generic point of Y' and w the generic 

point of X'. By definition, codim(Y' ,Y) = dim(Oy, z) ~ by (III,1.7) , 

dim(Ox, w) ~ dim(Oy, z) + dim(Ox,w~ O k(z)) ~ dim(Oy,z) ! 
Ygz 

whence (i). 

Suppose f is quasi-flat. Then, by (2.6) , f(w) has no 

generization~ hence f(w) = z. Part (ii) now results from the 

following proposition. 

Proposition (2.11). - Let ~ : A >B be a local homomorphism 

of noetherian rings, m the maximal ideal of A and k = A/m. 

Assume that either of the following hypotheses holds: 

(a) There exists a finite nonzero B-module M which is flat over A. 

(b) For all primes p 

(essential) primes 

of A not equal to m 

q of pB, -l(q) ~ m. 

Then dim(B) = dim(A) + dim(B~Ak). 

and all minimal 

Proof. Assume (a) and let q be any minimal prime of pB. 

If -l(q) = m, then the composition A )B }Bq is a local 

homomorphism. By (2.3) and (1.5) , M is flat over A~ so, by (1.6), 
q 

M is faithfully flat over A. Hence, by (2.4) , there exists a 
q 

= ; ql ~ pB, prime q' of Bq such tha t  g~-l(q t) p. Thus, qBq 

contradicting minimality of q. Therefore (b) holds. 
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Assume (b). If dim(A) = O, then m is the nilradical of A 

by (II,4.7). Hence, mB is contained in the nilradical n of B. 

So, dim(B) = dim(B/nB) and the formula holds. 

Let dim(A) > O. Let {qi } be the set of minimal primes of 

B and Pi = ~'l(qi)" Suppose Pi = m for some i. Since dim(A) > O, 

there exists a prime p of A not equal to m. Then qi ) pB and, 

since qi is a minimal prime of B, it is afortiori a minimal prime 

of pB, contradicting (b). Hence Pi ~ m for all i. 

Let {p~} be the set of minimal primes of A. Since 

' / m. Since A and B are noetherian, they have dim(A) > O, pj 

only a finite number of minimal primes by (II,3.7). Hence, by 

(III,l.5), there exists an element x ~ m, x ~ Pi and x f p~ for 

all i, j. Let A' = A/xA, B' = B/xB. By (III,1.6) , dim(B') = 

= dim(B)-1 and dim(A') = dim(A)-l. Moreover, it is clear that 

dim(B~Ak) = dim(B'~A,k) and that (b) holds for ~ : A' ...... )B'. Hence, 

the formula results by induction. 

3. The local criterion of flatness 

Lemma (3:i) o - Let A )B be a homomorphism of rings and M 

an A-module. Then the following conditions are equivalent: 

(i) Tor~(M,N) = O for all B-modules N. 

A 
(ii) M®AB is a flat B-module and TorI(M,B) = O. 

Proof. Dualized, (IV,2 2) yields the spectral sequence of a 

composite right-exact functor: E 2pq= LpS(LqT(M))~Ep+q= Lp+q(S~T) (M), With 

S = - ®B N, T = - GAB and SoT= - ~A N, the exact sequence of terms of 

low degree ([2],XV,5.12a) is 

B 
N~BTOr~(M,B) ) Tor~(M,N) ~ TorI(M~AB,N) ~0, 

and the equivalence follows easily. 
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Theorem (3.2). - Let A be a ring, I an ideal of A and M 

an A-module. Consider the following conditions: 

(i) M is a flat A-module. 

(ii) M®AA/I is a flat (A/I)-module and Tor~(M,A/I) = O. 

(ii') M~AA/I is a flat (A/I)-module and the canonical homomorphism 

I~AM )IM is an isomorphism. 

(iii) Tor~(M,N) = 0 for all A-modules N annihilated by I. 

(iii') Tor~(M,N) = 0 for all A-modules N annihilated by I s for 

some s (depending on N) 

(iv) M~gA(A/I s) is a flat (A/IS)-module for all s. 

(v) M~A(A/I) is a flat (A/I)-module and ¥ : gr~(M)~A/igr~(A) ) gr~(M) 

is an isomorphism. 

Then the following implications hold: 

(i) ..... >(ii)< >(ii')<~ ~ (iii)e--~. (iii') > (iv) { > (v) . 

Further, suppose that I is nilpotent or that the following 

three conditions hold: A is noetherian~ there exists a noetherian 

A-algebra B such that M is a finite B-module; and IB ¢ rad(B). 

Then (iv) implies (i) and, hence, all the conditions are equivalent. 

Proof. By (1.5), (i) implies (ii) and, by (1.8) , (ii) is 

equivalent to (ii'). By (3.1) with B = A/I, (ii) is equivalent to 

(iii) and, by (3.1) with B = A/I s (iii') implies (iv) 

The implication (iii')~-~(iii) is trivial. Assume (iii). Let 

N be annihilated by I s and consider the exact sequence 

Tor~(M, IN) ~ Tor~ (M,N) , Tor~ (M,N/IN) 

since IN is annihilated by I s-I and N/IN is annihilated by I, 

the two end terms may be assumed zero by induction on s. Then 

Tor~(M,N) = O and thus (iii) is equivalent to (iii'). 
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Consider the diagram 

s +I®A M s I ~ I  ®AM 
O 

S (A)~/~''Igr i (M) ,~gr I >0 

°s+ ! 
0 

Ys 

O • )IS+iM )ISM s 
) gr I (M) - ) O 

Assume (iii'). Then, by (1.8) 8 and s are isomorphisms Thus 
' s s+l " ' 

for all s > O, Ys is an isomorphisml hence, y = ~ Ys is an iso- 

morphism. Furthermore, by (iii') }(ii) , M~A(A/I) is a flat 

(A/I)-module. Thus, (iii') implies (v). 

If 8s+ 1 is an isomorphism, the map Is+I®AM---gIS®AM is 

injective. If further (v) holds, Ys is an isomorphism~ so by the 

five lemma, 8 s is an isomorphism. If I is nilpotent, then 8s+ i 

is an isomorphism for large s~ hence, if (v) also holds, descending 

induction yields (ii'). 

Fix n > O and replace A by A/I n , I by I/I n and M by 

M/InM to obtain conditions (i) n, (ii)n,(iii) n, (iv) n and (v) n. The 

implication (iv) ~ (i)n is trivial~ (i)n~(V)n, proved. Observe 

/~ gr~(M) for s < n 
s (~/inm 

gr ( i/In ) 

i O for s i> n 

hence, if (v) holds for all n, then (v) holds. Therefore, (iv) 
n 

implies (v). 

Since I/I n is nilpotent, (v) n implies (ii') n. However, the 

implications (v) ---~(V)n and (ii')n~(iv) n are proved, and, clearly, 

if (iv) n holds for all n, then (iv) holds. Hence, (v) implies (iv). 
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It remains to prove the implication (iv)~ (i) under the 

following conditions: A is noetherianl there exists a noetherian 

A-algebra B such that M is a finite B-module; and IB ¢ red(B). 

Let N' ............ )N be an injection of finite A-modules and consider 

the injection h : N'/(IrNnN ') ~N/IrN. Then h~id M may be written 

in the form 

h~idMe(A/ir ) : (N'/(IrNnN,)e(A/I r) (M~A (A/Ir) ) ~(N/IrN)@(A/I r) (M~AA/Ir) ,thus 

h@id M is injective by (iv). By the Artin-Rees lemma (II,I.14), there 

exists an integer k ~ O such that Ir-k(N'NIkN) = N'NIrN for all 

r > 0. Let M' be the image of (N'QIkN)@A M in N'~AM. Then 

h~id M becomes g : N,~AM/Ir-kM , r )N@AM/I (N~AM). The filtrations 

(Ir-kM') and (Ir(N'@AM)) induce the same topology on N'~AM; hence, 

by (II,l.9) and 1.8) , g : (N'®AM)^ ~(N~AM)^ is injective. There- 

fore, by Krull~s intersection theorem (II,l.i5) , N'~AM .... )N~AM is 

injective. Hence, it follows from (1.7) and (1.8) that M is flat, 

completing the proof of the local criterion. 

Proposition (3.3) . - Let A )B be a homomorphism of 

noetherian rings, I an ideal of A and I' an ideal of B such 

that IB ¢ i' ¢ red(B). Let M be a finite B-module and M = 

= him M/I'nM. Then the following conditions are equivalent: 

(i) M is flat over A. 

(ii) M is flat over A. 

(iii) M is flat over A. 

Proof. Since B is faithfully flat over B (1.10), the functor 

- ~A M is exact if and only if - @AM~B ~ is exact. However, by 

(II,l.18), -@A ~ =- @AM~B ~. Hence (i) and (ii) are equivalent. 

A 

By (II,i.18) , M is a finite B-module; by (II,1.22) , B is a 

noetherian A-(rasp. A-) algebra, and A and A are both noetherian 
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rings~ and, by (II,i.23) , IB c rad(B). Since A/I n ~ ~/~n by 

(II,i.19) , the equivalence of (i) and (iv) of the local criterion 

(3.2), yields the equivalence of (ii) and (iii). 

Proposition (3.4). - Let R )A and A )B be local homo- 

morphisms of noetherian rings and let M be a finite B-module. 

Suppose A is flat over R. Then M is flat over A if (and only 

if) the following two conditions hold: 

(a) M is flat over R. 

(b) M~Rk is flat over A~Rk where k = R/m and m is the maximal 

ideal. 

Proof. The implication (i)~ (v) of the local criterion applied 

(M/IM)~)kgr: * (M) where I = mA, and to A to M yields (R) ~ ~gr I 

yields (A/I)~gr:(R) }gri(A). Therefore, by (v)---#(i) of the 

local criterion, M is flat over A. 

Proposition (3.5). - Let A )B be a local homomorphism of 

noetherian rings. Let M be a finite B-module, m the maximal ideal 

of A and k = A/m. Assume the following conditions hold: 

(a) A is a regular local ring. 

(b) M is a Cohen-Macaulay B-module. 

(c) dimB(M) = dim(A) + dimB~Ak(M~Ak ) . 

Then M is flat over A. 

Proof. Since k is a field, M~Ak is flat over k. So, by 

(ii) }(i) of the local criterion, it suffices to prove Tor~(M,k) = O. 

Let x I ..... x r be regular parameters of A where r = dim(A). Then, 

by (c), 

dimB(M/(xlM + ... + XrM)) = dimB(M) - dim(A) . 

Hence, by the Cohen-Macaulay theorem (III,4.3) , (x I ..... x r) is an 

M-regular sequence. 
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Let M. = M/(XlM + ... + x.M) and A. = A/(xlA + ... + x.A). 
l I l l 

We prove Tor~(M,A i) = 0 by induction on i. If i = O, then 

AO= A is A-flat. If i 9 O, then the exact sequence (III,4.11) 

Xi+l>A 
0 )A i i ;Ai+ 1 >O yields an exact sequence 

A x. 
Tot (M,A i) )TorI(M,Ai+I) )M.I l+l)M''l 

By induction, Tor~(M,Ai) = 0 and, by M-regularity, multiplication by 

A 
xi+ I is injective; hence, Tori(M,Ai+i) = O. 

Corollary (3.61 . - Let A )B be a quasi-finite, (cf WT,2.1) , 

local homomorphism of regular local rings having the same dimension. 

Then B is flat over A. 

Proof. Let k be the residue field of A. Since B is quasi- 

finite over A, dim(B~Ak) = O (II,4.5 and 4.7). By (III,4.12), B is 

Cohen-Macaulay. Hence, (3.5) yields the assertion. 

4. Constructible sets 

Definition (4.1). - Let X be a noetherian topological space 

(i.e., the closed sets satisfy the minimum condition). A subset Z 

is said to be constructible if it is a finite union of locally closed 

subsets of X. 

Remark (4.2). - 

(i) Open sets and closed sets are constructible. 

(ii) If Z and Z' are constructible, then ZUZ' and ZNZ' are 

constructible. 

(iii) If f : Y %X is continuous and Z is constructible in X, 

then f-i(Z) is constructible in Y. 

(iv) If Z is constructible in Y and Y is constructible in X, 

then Z is constructible in X. 
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Lemma (4.3). - Let X be a noetherian space. A subset Z is 

constructible if and only if the following condition holds: For all 

closed irreducible subsets Y such that Z N Y is dense in Y, there 

exists a nonempty set V in ZNY which is open in Y. 

n 

Proof. Suppose Z is constructible~ say, Z = i~l(VinFi) with 

the V. open and the F. closed. Let Y be a closed irreducible 
1 1 

subset such that ZNY is dense in Y. Then znY = u(v~r~F I) where 

V~ = V.NY and F~=F.NY. Now, the dense subset ZAY of Y is contained 
1 l 1 1 

in the closed subset UF~$ so, Y = UF'.. However, Y is irreducible~ 
1 1 

so, for some j ,  F~ = Y a n d  V~ = V~NF~ ¢ ZAY. 
J 3 3 J 

Conversely, suppose the condition is satisfied. Let S be 

the family of closed subsets Y of X such that ZNY is not con- 

structible. Suppose S is nonempty and let X' be a minimal element 

of S. Replacing X' by X, we may assume ZNY is constructible 

for all proper closed subsets Y. 

Suppose X = XIu X 2 where Xl~X 2 are proper closed subsets. 

Then each ZNX i is constructible$ hence,Z=(ZNXl)U(ZNX2) is con- 

structible. 

Suppose X is irreducible. If the closure Z of Z is a 

proper subset, then Z = ZNZ is constructible. If Z = X, then, by 

hypothesis, there exists a nonempty open set V in Z. Then F = X-V 

is a proper closed subset~ so, Z = VU(FNZ) is constructible. 

Lemma (4.4). - Let X be a noetherian space such that every 

closed irreducible subset has a generic point. Let Z be a con- 

structible subset of X and x ~ Z. Then Z is a neighborhood of 

x if (and only if) every generization x' of x is in Z. 
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Proof. By noetherian induction, we may assume that, for every 

proper closed subset Y of X which contains x, YNZ is a neigh- 

borhood of x in Y. Suppose X = XlU X 2 where X I and X 2 are 

proper closed subsets. For i = 1,2, if x ~ X., then, by assumption, 
l 

there exists an open set V i of X i such that x ~ Vie XiA Z~ if 

x / X i, set V i = ~. Let Fi= X i- Vi, F = FIU F 2 and V = X-F. Then 

V is a neighborhood of x and V ¢ VIU V2¢ Zl so, Z is a neighbor- 

hood of x. 

Suppose X is irreducible. If x' is its generic point, then, 

by hypothesis x' ~ Z~ whence, Z = X. So, by (4.3) , there exists a 

subset V of Z which is open. If x ( V, the proof is complete. 

If x / V, let Y = X-V. Then, Y is a proper closed subset of X 

and x ~ Y. Hence, by assumption, YNZ is a neighborhood of x in 

Y. Let F be the closure of X-Z in X° Then F is also the 

closure of X-Z in X-V = Z~ so, x ~ F. Let V' = X-F. Then V' is 

a neighborhood of x contained in Z and thus Z is a neighborhood of x. 

Proposition (4.5). - Let X be a locally noetherian space 

such that every closed irreducible subset has a generic point. Then 

a subset V of X is open if (and only if) the following two con- 

ditions are satisfied for all x ~ V: 

(a) V contains every generization of x. 

(b) vn{x} is a neighborhood of x in {x}. 

Proof. The assertion being local, we may assume X is 

noetherian. Then, by (4.3), V is constructible~ hence, by (4.4), V 

is open. 

Theorem (4.6) (Cheva!ley). - Let f : X )Y be a morphism of 

finite type of noetherian schemes. Let Z be a constructible subset 

of X. Then f(Z) is constructible. 
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n 
. are locally closed. Proof. Let Z = = Z i whexe the Z l 

Give each Z. the (unique) induced, reduced subscheme structure. 
l 

Since X is a noetherian space, the immersions Z. ~ >X are of 
l 

finite t y p e .  R e p l a c i n g  X b y  IIZ i ,  we m a y  t h e r e f o r e  a s s u m e  Z = X 

and X is reduced. 

Let T be a closed irreducible subset of Y such that 

TNf(X) is dense in T| in view of (4.3) , it suffices to prove that 

TNf(X) contains an open set of T. Since TNf(X) = f(f-1(T)) , if 

we replace Y by T and X by f-l(T) , given their reduced sub- 

scheme structures, we may assume that f(X) is dense in Y a~d that 

Y is reduced and irreducible. 

We clearly may assume Y is affine. Then X = UX. with X. 
l l 

affine and irreducible. Since Y is irreducible, f(Xj) is dense in 

Y for some j. Hence, replacing X by Xj, we may assume X is 

affine, reduced and irreducible. 

Let Y = Spec(A) and X = Spec(B) where A and B are inte- 

gral domains and B is of finite type over A. Since f(X) is dense 

in Y, we may assume A is contained in B. It now remains to show 

that there exists a nonzero element g ~ A such that, for all primes 

p of A such that g ~ p, there exists a prime P of B such that 

p = Anp. Take g ~ A and C = A[T I ..... T n] as provided by the 

lemma below. Then pCg is prime in Cg! so, since Bg is integral 

over Cg, there exists a prime P' of Bg lying over pCg by 

(III~2.2). Let P = P'AB~ then PAA = p. 

Lemma (4.7). - Let A be a domain and B an A-algebra of 

finite type which contains A. Then there exists a nonzero element 

g of A and a subalgebra C of B isomorphic to a polynomial 

is integral over C . algebra A[tl,...,tm] such that Bg g 
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Proof. Let S = A-{O} and K = S-IA. Then, by (III,2.5) , 

there exist elements T i ..... Tn~ S-IB, algebraically independent over 

K, such that S-IB is integral over the polynomial algebra K[TI,...,Tn]° 

There exists g ~ S such that Ti= ti/g with t.~l B and such that 

the integral equations of generators z I ..... z of S-IB over K 
n 

have coefficients of the form c/g with c ~ A. Then B is integral 
g 

over A[t]g. 

Proposition (4.8). - Let X and Y be locally noetherian 

schemes and f : X #Y a morphism locally of finite type. Let x 

be a point of X and y = f(x). If V is a neighborhood of x, 

then f(V) is a neighborhood of y if (and only if), for all 

generizations y' of y, there exists a generization x' of x such 

that f(x') = y'. 

Proof. We may assume that X, Y are affine and noetherian and 

that V is open. By (4.6), f(V) is constructible; so, by (4.4) , 

f(V) is a neighborhood of y. 

5. Flat morphisms and open sets 

Theorem (5.1). - Let X and Y be locally noetherian schemes 

and f : X >Y a morphism locally of finite type. If f is quasi- 

flat, then f is open. 

Proof. Let U be an open set of X and y = f(x) a point of 

f(U). By (2.6), for any generization y' of y, there exists a 

generization x' of x such that f(x') = y'; hence, by (4.8), f 

is open. 

Theorem (5.2) (Lemma of qeneric flatness). - Let A be a 

noetherian domain, B an A-algebra of finite type and M a finite 
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B-module. Then there exists a nonzero element f of A such that 

Mf is free over Af. 

Proof. If K is the quotient field of A, then B~AK is a 

K-algebra of finite type and M~AK is a (B~AK)-module of finite 

type, Let n = dim(M~AK). 

If n < O, then M~AK = O. Let {gl ..... gn}- be a set of 

generators of M over B. There exists a nonzero element f of A 

such that fgi = 0 for all i. Then Mf= O. 

By (II,3.7), there exists a filtration of B-modules 

MO) = 0 M = .... ) Mq 

such that Mi/Mi+ i ~ B/Pi for suitable primes Pi of B. Suppose 

there exist elements f'~l A such that the (Mi/Mi+l) f. are free over 
I 

Af.. If f = Hfi, then Mf is free over Af. Hence, we may assume 
l 

M is of the form B/p. Further, replacing B by B/p, we may 

assume B is a domain. Let I be the annihilator of the A-module 

B. If 0 / g ~ I, then Bg O; so, B~AK = O. 

Assume n = dim(B~AK) is not zero. Then, by the above para- 

graph, A 9 B is injective. By (4.7), there exists a nonzero element 

g of A and a polynomial algebra C = A[T i .... ,T r] contained in B 

such that B is integral over C . Replacing A by A and B by 
g g g 

B , we may assume B is integral over C. Hence, by (III,2.2) , 
g 

n = dim(C@AK). There exists an exact sequence of C-modules of the form 

O ---9 C m ----~B ---gN ----eO 

where m = dimK(T)(B~AK(T)). It follows that dim(N~AK) < n. Hence, 

by induction, there exists a nonzero element h of A such that 

N h is a free ~-module. Therefore, B h is a free Ah-module and the 

proof of (5.2) is complete. 
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Lemma ~5.3). - Let A be a noetherian ring, B ant A-algebra 

of finite type and M a finite B-module. Let p be a prime of B 

and q the trace of p in A. Suppose M is flat over A (or, 
P q 

equivalently, over A). Then there exists a nonzero element g of A 

such that: 

(i) (M/qM)g is flat over A/q. 

(ii) Tor~(M,A/q)g = O 

Proof. The lemma (5.2) of generic flatness, applied to A/q, 

yields an f ~ A-q such that (M/qM) f is flat over A/q. By 

A . Since Tor~(M,A/q) is hypothesis 0 = Torl(Mp,A/q) = Tor~(M,A/q)p 

a finite B-module, there exists an element h of B-p such that 

Tor~(M,A/q) h = O. Then (i) and (ii) hold for g = fh. 

Lemma (5.4). - Under the assumptions of (5.3), if p' is a 

prime of B containing p such that g ~ p', then Mp, is flat 

over A (or, equivalently, over A). 
q 

Proof. By (5.3, (i)) and (2.3), Mp,/qMp, is flat over A/q 

and, by (5.3, (ii)) , O = TorA(M,A/q)p, = TorA(Mp,,A/q) . Hence, the 

local criterion (3.2) , applied to the A-algebra Bp,, the Bp,-module 

Mp, and the ideal q, yields the assertion. 

Theorem (5.5). - Let X and Y be locally noetherian schemes 

and f : X )Y a morphism locally of finite type. Let F be a 

coherent Ox-MOdule and U the set of points x ~ X such that F x 

is flat over Of(x). Then U is open. 

Proof. Since generization corresponds to localization, it 

follows from (2.3), (5.3) and (5.4) that the two conditions of (4.5) 

hold~ hence, U is open. 



Chapter VI - Etale Morphisms 

1. Differentials 

Definition (1.1). - Let k be a ring, A a k-algebra and M 

an A-module. The module of k-derivations of A in M, denoted 

Derk(A,M) , is defined as the set of all maps D : A )M satisfying 

the following two conditions: 

(a) D is k-linear. 

(b) D(fg) = fD(g) + gD(f) for all f, g ~ A. 

Remark (1.2). - Let k be a ring, A a k-algebra, M an 

A-module and D : A )M a Z-linear map. Then: 

(i) If D satisfies (b) , then D satisfies (a) if and only if 

D(f) = O for all f ~ k. 

(ii) Derk(A,M) is a functor in M. 

Definition (1.3). - Let k be a ring and A a k-algebra. 

Suppose that the functor MI >Derk(A,M ) is represented by the pair 

~lA,/k ) I (dA/k, ; namely, suppose that ~A/k is an A-module, that 

Derk(A,~A/k) and that, given any A-module M and any dA/k ~ 1 

k-derivation D : A )M, there exists a unique A-homomorphism 

1 
w : ~A/k >M such that the following diagram commutes: 

d 
A A ~  i 

~A/k 

M 

1 
(o r ,  e q u i v a l e n t l y ,  t h a t  t he  map o f  f u n c t o r s  HOmA(~A/3c -) )Derk(A, - ) ,  

i nduced  by dA/k ,  i s  an i s o m o r p h i s m ) .  By " a b s t r a c t  n o n s e n s e " ,  t he  
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1 
pair (dA/k,~A/k) is easily seen to be unique up to unique isomorphism. 

i 
The A-module ~A/k is called the module of i-differentials of A 

over k~ dA/k, the exterior differential of A over k; and 

(dA/k 1 ,~A/k), the differential pair of A over k. 

Proposition (1.4). - Let k be a ring and A = k[Ta] a 

polynomial algebra (in possibly infinitely many variables). Let 

be the free A-module on the symbols dT 

derivation defined by dP(T) =~ OP ~--~--dT a 

differential pair of A over k. 

and d : A )~ the 

Then (d,~) is the 

Proof. Let M be an A-module, D g Derk(A,M) and define 

w : n .......... )M by w(dTa) = D(Ta). Then w(dP(T)) = ~0-~-0P w(dT ) = 
c~ 

= D (P (T)) ! whence, the assertion. 

Remark (1.5). - Let A ~ >B 

k ->k' 

be a commutative diagram 

of commutative rings and suppose the differential pairs 

11 I 
(dB/k,~ B/k ) and (dB/k, ,~lB/k,) exist. Then, since 

I 
dB/k,¢ Derk(B,~B/k) , there exists a unique B-homomorphism 

i i 
VB/k,/k. ~B/k-----Z~B/k, such that dB/k, = VB/k,/k o dB/k 

I 
more, since dB/k o @ ~ Derk(A,~B/k) , there exists a unique 

A-homomorphism w : ~2A/k ~B/k such that w o dA/k = dB/k o @! 

whence a B-homomorphism UB/A/k: nA/k ®A B---gQ /k such that the 

following diagram commutes: 

i 
(dA/k 'QA/k ) , 

Further- 

U B/A/k V B/k '/k 
I i I 

T T dA/k ~k i dB/k idB dB/k' 

A~k k , ~ ~'i B ..... ;B . 
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Theorem (1.9). - Let k be a ring, ~ : A ) B a k-algebra 

homomorphism. If the differential pairs exist, then there exists a 

canonical exact sequence of B-modules 

I/~ ~A B UB/A/~> ~B/kl VB/A/k i ~A~ > riB/A ~ 0 

Proof. If M is a B-module, then the sequence 

0 ~ DerA (B,M) > Derk (B,M) 

is easily seen exact in view of (1.2,(i)). 

sequence 

1 1 i 
O ~ H°mB (~B/A ,M) )Hom B (nB/k ,S) ,Hom B (hA/k® A B ,S) 

is exact. Therefore, the following lemma completes the proof. 

Derk(A,M) 

It follows that the 

Lemma (1,7) . - Let B be a ring. A sequence 

N' f) N g )N" )0 of B-modules is exact if (and only if) the 

sequence O ~Hom(N",M)---~Hom(N,M) ~Hom(N',M) is exact for all 

B-modules M. 

Proof. Since O ........... ~Hom(N",coker(g)) )Hom(N,coker(g)) is 

exact, the canonical map N" ) coker(g) is OF so, g is surjective. 

Since Hom(N",N"). ~Hom(N,N") )Hom(N',N") is exact, idNogof = O. 

So there exists a canonical map h : coker(f) )N". Since 

Hom(N",coker(f)) )Hom(N,coker(f)) )Hom(N',coker(f)) is exact, 

the canonical map N" ) coker(f) yields an inverse to h, completing 

the proof. 

Theorem (!.8). - Let k be a ring, A a k-algebra, I an ideal 

of A and B = A/I. Suppose the differential pair of A over k 

exists. Then the differential pair of B over k exists and there 
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exists a canonical exact sequence of B-modules 

i/i 2_ 6 ~ ~ ~ AB ) 1 , 
/k nB/k .... ~ 0 

where 6 is induced by dA/k. 

Proof. Let M be a B-module. Then the sequence 

O )Derk(B,M) ) Derk(A,M) ~HOmB(I/I2,M) 

is easily seen exact. However, the sequence 

O )HOmB(coker(6),M) ~Derk(A,M) )HOmB(I/I2,M) is also exact. 

1 
Therefore, ~B/k exists and is equal to coker(6). 

Theorem (Iz9) . - Let k be a ring and B a k-algebra. Then 

the differential pair (dB/k I ,QB/k ) exists. 

Proof. Since B is a quotient of some polynomial algebra 

A = k[T], the assertion follows from (1.4) and (1.8). 

Lemma (I.IO). - Let k be a ring, A a k-algebra, ~ an 

A-module and d : A )~ a k-derivation. Suppose that d(A) 

I 
generates ~ and that there exists a map w : ~ )~A/k such that 

dA/k = w o d. Then w induces an isomorphism, 

~ I 
(d,~) ~(dA/k,nA/k) . 

Proof. Since d is a k-derivation, there exists a map 

1 
w' : n~/k ) e such that d = w' o dA/k. Since d(A) generates n, 

w' is surjective. By uniqueness, w o w' = id~ hence, w' is also 

injective. 

PrODosition (I.II). - Let k be a ring and A a 

I 
k-algebra. Then ~A/k is generated by the differentials dA/k(f) 

as f runs through any set of algebra generators of A over k. 
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1 
Proof. Let D be the submodule of ~A~ generated by the 

.QI 
dA/k(f). Then (I.IO) implies that the inclusion w : ~ " A/k is 

an isomorphism. 

Proposition (1.12). - Let k be a ring, B 1, B 2 two k-algebras 

and A = BlaB 2. If d = (dBl/k®idA) + (dB2/k~id A) and n = 

= (~1/k@B1 A)~( 2A) , then (d,D) is the differential pair of 

A over k. 

Proof. By (1.11) , the image of d generates D. By (1.5), 

the canonical injections B i )A induce maps ui= UA/Bi/k__ -- and, if 

1 
w = u l +  u2 :  ~ - " - ~ A ~ k '  t h e n  c l e a r l y  w o d = dA/~.  Hence ,  t h e  

assertion follows from (1.10). 

Proposition (!.13). - Let k be a ring, B a k-algebra and 

A = B~B. Let p : B~B )B be the map defined by p(f~g) = fg, 

I = ker(p) and d : B )I/I 2 the k-homomorphism defined by d(f) = 

= l®f - f®l. Then d is a k-derivation, the sequence 

1 1 o ~i / i2 6:~A/k®A B '~B/~ ~o 

is exact and split, and (d,I/I 2) is the differential pair of B over k. 

Lemma (1.14). - Under the conditions of (1.13) , I is generated 

over B (via j l ) by the elements of the form l~f - f@l. 

Proof. Clearly, l@f - f@l ~ I for all f ~ B. If 7fi~gi~ I, 

then Zfig i = 0~ so, Efi~g i = Z(fi~l)(l~g i- gi~l). 

In (I.13) , d is a derivation: d(fg) = l~fg - fg~l = 

= (1®f) (1~g - g®l)+(g®l) (l®f - f®l) = fdg + gdf. By (1.14) , d(B) 

1 >nl generates I/I 2. In view of (1.12) , let Pr2 : DA/k~A B B/k be 

the projection on the second factor and w = Pr2o 6. Then, since 
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0(l®f - f~l) = -df ~ df, it follows that w o d = dB/k. Hence, 

(I.IO) yields the assertion. 

Remark (I.15). - (1.13) suggests an alternate existence proof: 

direct establishment of universality of (d,I/I2). Let D : B----)M 

be a k-derivation and define a k-homomorphism D' : B~B cM by 

D'(f~g) = fDg. Then D)~l~f - f~l) (l~Dg - g~l)) = D(fg)-fDg - gDf+O=O~ 

hence, by (1.14), D'(I 2) = O. Thus, D' induces a B-homomorphism 

w : I/I 2 )M and w(df) = w(l~f - f~l) = Df. 

Example (1.16). - Let k be a ring and B = k[T a] a poly- 

= = T  + h  - by nomial algebra. Then A B~B = k[Ta,U~]. Let U a a a" 

(i.14) , I/I 2 is the B-module generated by the h a and, by (1.13), 

1 
6 : I/I 2 .... ) QB/k is an isomorphism defined by 6 (h(x) = dT a. If 

P(T) ~ B, then P(T+h)-P(T) --0P h =~0--~ + O(h 2) where O(h 2) ~ 12 

Hence, as in (1.4) ~i ' B/k is the free B-module generated by symbols 

~-0P 
dT a and dP (T) =/--0-~- dTa" 

Proposition (1.17). - Let k be a ring, B I, B 2 two k-algebras 

and A = BlX B 2. Then the differential pair of A over k is 

Proof. The assertion results formally from the fact that the 

category of A-modules is the direct product of the categories of 

Bl-mOdules and B2-modules. 

Proposition (1.18). - Let k be a ring, A, k' two k-algebras 

and A' = A~k'. Then (dA/k~ idA, , G~/k~A A') is the differential 

pair of A' over k'. 

• I ) 

Proof. By (1.11), dA~®AidA,= dA/k~ki~): A) ~GA~A A = 

= n~/k~k'/~ K is a k'-derivation whose image generates. Furthermore, 



- i08 - 

by (1.5), dA,/k , = (VA,/k,/k o UA,/A/k)O(dA/k~idA,). Hence, (1.10) 

yields the assertion. 

Corollary (1.19). - Let k be a ring, B I, B 2 

and A = BlaB 2. Then the homomorphism Jl: BI 

Jl(b) = b~l, defines a canonical sequence 

o 

which is exact and split. 

i 1 
~A/k ~ ~A/B i 

two k-algebras 

)A, given 

>O 

Proof. By (1.18), ~/BI ~2/k®B2 A, = so the assertion results 

immediately from (i.12). 

Proposition (1.20). - Let k be a ring, A a k-algebra and 

(resp. S) a multiplicative set in k (resp. A) such that a maps 

into S. Then the differential pair of S-IA over a-lk is 

(d,S-1~/k) where d(~) = (SdA/k(a) - adA/k(S))/s 2. 

-1 1 
Proof. The image of the k-derivation d : S-IA )S QA/k 

-1 1 
generates S ~A/k by (1.11) The composition of the natural 

homomorphism h : A )S-IA with d is a k-derivation~ 
S-1A/a-I k 

I nl 
so there exists an A-homomorphism w • ~A/k ~ such that 

S-IA/~-Ik 

d -I -I oh = w Since ~I is an S-1A-module, w 
S A/a k ° dA/k" S-IA/a-lk 

-I I i such that w o d = may be extended to w : S ~A/k-----~S-IA/~-Ik 

= ds_IA/~_ik. Hence, the assertion results from (I.I0). 

Remark (1.21). - In geometric terms, this discussion may be 

reinterpreted as follows. Let X be an S-scheme. By (•.20) and 

i 
(1.9), there exists a canonical pair (dx/s ~X/s) consisting of a 

1 1 
quasi-coherent Ox-MOdule ~X/S and a map dX/S: OX----e~X/S defined 

as follows: for each open affine subset V = Spec(k) of S and for 
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each open affine subset U = Spec(A) of X lying over V, 

~/slU = 1 ~ ~ 1 (hA/k) and dX/slU = (dA/k) The Ox-MOdule DX/S is 

called the sheaf of 1-differential forms and the map dx/S is called 

the exterior differential. If X is locally of finite type over S, 

1 
then ~X/S is of finite type by (1.11). 

Let X and Y be S-schemes If f : X ~Y an S-morphism, 

then there exists a canonical exact sequence of Ox-MOdules 

f . ~ I . ~ G I . . . _ _ . _ ~ G 1  >0 
x/s x/s x/Y 

by (1.6). If Prl: XXsY )X and Pr2: XXsY 

projections, then 

. ~ 1  * 1 1 
Pr I X/S ~ Pr2ny/S = nX~sY/S 

)Y are the 

by (1.12). Further, by (1.19) the canonical sequence 

. 1  ~ 1 . 1  
O ~> Prl~X/s ~XXsY/S---) Pr2~y/S ;O 

is exact and split. Finally, by (1.17) , 

f~l 1 1 
x/s • ~x/s = nx.x/s" 

Let i : X ~--->Y be an immersion of S-schemes. Then, by (1.8), 

the sequence of Ox-MOdules 

. 1 1 
j/j2 6 )i ny/s----~ nX/s 20 

is exact, where J is a sheaf of ideals defining X in some neigh- 

borhood and b is induced by dy/S. The Ox-MOdule j/j2 is called 

the conormal sheaf of X in Y and is denoted N(i). 

If X is an S-scheme, then the diagonal morphism 

AX/S: X )XXsX is an immersion. Let JX/S be a corresponding 

sheaf of ideals. Then, by (i.13) , 

~1 / 2 v 
= (J--s/Jx--s)x// = x/s ~/s N(AX/S) • 
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Finally , let S' ~S be a morphism, X an S-scheme, 

X' = XXsS', and f : X' ~X the projection. Then, by (1.18), the 

canonical map 

. I 1 

f *x/g -'-+ %' / s '  
is an isomorphism. 

2. Quasi-finite morphisms 

Definition (2.1). - Let X and Y be schemes and f : X 

a morphism locally of finite type. Then f is said to be quasi- 

finite if, for each point x ~ X, O is a quasi-finite O -module, 
x y 

i.e., if Ox/myO x is a finite dimensional vector space over the 

field k(y). 

~Y 

Remark (2.2). - A finite morphism is quasi-finite. 

ProDosition (2~3). - Let X and Y be schemes and f : X 

a morphism locally of finite type. Let x be a point of X and 

y = f(x). Then the following conditions are equivalent: 

(i) O is a quasi-finite O -module. 
x y 

(ii) x is isolated in its fiber; i.e., {x} is open in f-l(f(x)). 

(iii) The following two conditions hold: 

(a) There exists a positive integer r such that m r c m O . 
x y x 

(b) The field k(x) is a finite algebraic extension of k(y). 

~Y 

~roof. We may assume that Y and X are affine with rings 

O and A and that A is an O -algebra of finite type. Then 
Y Y 

f-1(y) = Spec(B) where B = A/myA. Let I be the kernel of the 

localization map B ~Ox/myO x Since I is finitely generated, 

there exists s ~ mx/myB such that Is = O; replacing B by Bs, we 

may assume B ) Ox/myO x is injective. 
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Assume (i). Then B is a finite dimensional k (y) -vector 

space; hence, by (II,4.5), B is artinian,So, by (II,4.7), f-l(y) is 

discrete and (ii) holds. Further, by (II,4.7) , (mx/myOx)r= O; 

hence, (iii) (a) holds. Since k(x) is a quotient of Ox/myO x, 

(iii) (b) holds. 

Assume (ii) holds. 

of x, we may assume 

finite type over k(y) 

(II, 4.7), (i) holds. 

(iii) implies (i). 

Replacing X by a suitable neighborhood 

f-1(y) = {x}. Then B = Ox; so, Ox/myO x is of 

and has only one prime ideal. Hence, by 

Finally, by (II,4.6) applied to Ox/myO x, 

Proposition (2.4). , Let X and Y be locally noetherian 

schemes, f : X )Y a morphism locally of finite type, x 

of X and 

o n l y  i f  0 
x 

y = f(x). Then 0 is quasi-finite over O 
x y 

is finite over 6 
Y 

a point 

if and 

Proof. If O 
x 

surjection ~' : k(y) n 

O n, to a map ~ : ~O x. 
Y 

r 
such that m c m 0 . 

x y x 
^ 

that 

is quasi-finite over O , then there exists a 
Y 

)Ox/myO x for some integer n > O; lift ~' 

By (2.3), there exists an integer r > 0 

Hence, it follows from (II,l.19 and 1.20 (ii)) 

: 6 n )0 is surjective. 
y x 

Conversely, assume there exists a surjection a : a n )0 
y x 

for some n ~ O. Then, by (II,I.19~ induces a surjection 

k(y) n ~k(x). In view of (2.3) , ~r c m 6 for some r and we are 
x y x 

reduced to proving the following lemma. 

Lemma (2.5). - Let A )B be a local homomorphism of 

noetherian local rings and m, n the maximal ideals. Suppose that 

^r ^^ r 
n c mB. Then n c mB. 
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Pro0 f. Consider the map ~ : nr----)B/mB~ by (II,i.19) , 

^r ^ ^^ 
induces a map ~ : n ~B/mB. By hypothesis, ~ = O~ hence, by 

(II,l.15), ~ = O. Thus, n r ¢ mB. 

3. Unramified morphisms 

DefinitiQn (3.1). - Let X and Y be locally noetherian 

schemes, f : X ~Y a morphism locally of finite type, x a point of 

X and y = f(x). Then f (resp. Ox/Oy) is said to be unramified at 

x if mx = my0x and k(x) is a finite separable field extension of 

k(y), (i.e., if Ox/myO x is a finite separable field extension of k(y)). 

Lemma (3.2). - Let k be a field, K an artinian k-algebra 

of finite type and k the algebraic closure of k. If K~k is 

reduced, (i.e., without nilpotents) , then K is a finite product of 

finite separable field extensions of k. 

Proof. By (II,4.9) , K = ~K. where K. are artinian local 
l l 

rings. Replacing K by K i, we may assume K is local. Since 

the maximal ideal of K is nilpotent, it is zero and thus K is 

a field which is finite over k by (II,4.7). 

Let ~ be an element of K and f(T) its minimal polynomial 
r. 

over k. Then k(a) ~ k[T]/f(T) ~ so, k(a)~kk ~ ~[T]/fi(T) l where 

the f.(T) are the distinct linear factors of f(T). By hypothesis, 
l 

k(~)~k is reduced. Hence, all r. = i~ so, ~ is separable. 
l 

Proposition (3~3). - Let X and Y be locally noetherian 

schemes, f : X )Y a morphism locally of finite type and x a point 

of X. Then the following conditions are equivalent: 

I 
(i) nX/Y is zero at x 

(ii) ~X/Y is an open immersion in neighborhood of x. 

(iii) f is unramified at x. 
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Proof. Assume (i) holds. Let J be the sheaf of ideals 

defining the diagonal in a neighborhood of itself and identify x 

with AX/y(X). Then, by (1.13), O = (Q~/Y)x = (J/J2)x" Hence, by 

Nakayama's lemma, J = 0 and (ii) holds. 
x 

Assume (ii). To prove (iii), we may assume that Y = 

= Spec(k(y)) , f-l(y) = X = Spec(A) and that AX/Y : X 9Xx~ is 

an open immersion. Let k be the algebraic closure of k(y). If 

A' = A~(y)k is proved isomorphic to a finite product Kk, then A 

will be finite dimensional over k(y) and (iii) will result from 

(3.2) . 

Replace Y by Spec(k) and X by X~k. Let z be a 

closed point of X. Then by (III,2.8) , Oz/m z ~ k. 

Consider the morphism g = (idx,h z) : X 9X×y~, where 

h : X ~X is the constant morphism through z, (defined by the 
z 

composition A )k(z) ,k ~ )A). Then, since the diagonal subset 

is open, g-i(~) = {z} is open. Thus, all closed points of X are 

open~ so, all primes of A are maximal. Hence, by (II,4.7) , A is 

artinian and X consists of a finite number of points. Then, by 

choosing X small enough, we may assume X consists of a single 

point and A = O x. Since AX/Y is an open immersion, A~kA >A 

is an isomorphism. Hence, dimk(A) = i and A = k. 

Assume (iii). To prove (i), we may assume Y = Spec(k(y)) 

X = f-l(y) in view of (1.18). By (2.3) x is isolated in X. Hence, 

we may assume X = Spec(k(x)). Thus, we are reduced to proving the 

following lemma. 

L@mma (3.4). - If L is a finite separable field extension 

I 
of K, then ~L,.. =/~ O. 
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Proof. Let D : L J M be a K-derivation. Let a ~ L and 

f(T) be the minimal polynomial of a over K. Then f(a) = O~ 

hence, f'(a)D(a) = O. Since a is separable over K, f'(a) / O. 

Therefore, D(a) = O. 

Proposition ~3.5) (Le sorite for unramified morphisms). - 

(i) Any immersion is unramified. 

(ii) The composition of unramified morphisms is unramified. 

(iii) Any base extension of an unramified morphism is unramified. 

Consequently, 

(iv) The product of unramified morphisms is unramified. 

(v) If gof is unramified, then f is unramified. 

(vi) If f is unramified, then fred is unramified. 

Proof. Assertions (i) and (ii) are immediate from the defini- 

tion. Assertion (iii) follows from (3.3 (i)) and (1.18). 

Proposition ~3.6). - Let X and Y be locally noetherian 

S-schemes and f : X , >Y an S-morphism locally of finite type. 

Let x be a point of X and s its projection on S. Then: 

(i) f is unramified at x if and only if the canonical map 

. 1 ._____.) 1 
f ~Y/S ~X/S is surjective at x. 

(ii) f is unramified at x if and only if f~sk(S) : X~sk(S) ~Y~sk(S) 

is unramified at x° 

. 1  1 1 
Proof. Since the sequence f Dy/{---~X/S----->~X/y ~O is 

exact by (1.6), (i) results from (3.3). Assertion (ii) follows 

immediately from the definition. 

Proposition (3.7). - Let X and Y be locally noetherian 

schemes, f : X ,Y a morphism locally of finite type, x a point 

of X and y = f(x). Then f is unramified at x, if and only if 
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Ox/Oy is unramified. Further, suppose that k(x) = k(y) or that 

k(y) is algebraically closed. If f is unramified at x, then 

~6 is surjective. 
y x 

Proof. Assume 8x/Oy is unramified. Then mx = mySx" By (2.5) , 

m x ¢ myOx; hence, mx= m O . By (II,i.19) , k(x)/k(y) is separable; 
yx 

thus, f is unramified at x. Conversely, if f is unramified at x, 

, , x/ is unramified. If, further, k(y) is then by (II,l.19) 6 Oy 

algebraically closed, then, since k(x)/k(y) is finite, k(x) = k(y). 

Therefore, in either case, k(y) ~k(x) 

(II,i.20), 6 )0 is surjective. 
y x 

is bijective. Hence, by 

4. Etale morphisms 

Definition (4.1). - Let X and Y be locally noetherian 

schemes and f : X )Y a morphism locally of finite type. Then f 

(resp. ~ : Oy )Ox, Ox/Oy)_ is said to be 6tale at x ~ X if f is 

flat and unramified at x. 

Example (4.2). - Let k be a field and f : X ) Spec(k) 
n 

an ~tale morphism. Then X = ~ Spec(ki) where the k. are finite 
i=l l 

separable extensions of k. 

Proof. By (2.3), X is an artinian scheme; hence, since f is 

unramified, 0 is a finite separable field extension of k 
x 

each x ~ X and X =~Spec(Ox)..~ 

for 

Propps~tion (4.3). - Let X and Y be locally noetherian 

schemes and f : X >Y a morphism locally of finite type. Then 

is ~tale at x ~ X if and only if 6 x is 6tale over 6f(x). 
f 

Proof. The assertion holds with "4tale" replaced by "flat" 

(V,3.3) or by "unramified" (3.7). 
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Proposition (4.4). - Let X and Y be locally noetherian schemes 

and f : X )Y a morphism locally of finite type. Suppose f is flat 

and quasi-finite at x • X. Then ~ : Of(x) > Ox is injective 

and finite. 

Proof. By (V,3.3) and (2.4), $ 

A 

(V,i.6) and (V,I.9) , @ is injective. 

is flat and finite~ whence, by 

Corol!arv (4.5). - Let X and Y be locally noetherian 

schemes, f : X )Y a morphism locally of finite type, x a point 

of X and y = f(x). If $ : 6 9 6 is an isomorphism, then f 
y x 

is ~tale at x. Conversely, suppose that the residue extension 

k(x)/k(y) is trivial or that k(y) is algebraically closed. If 

is ~tale at x, then $ is an isomorphism. 

Proof. By (4.3), if $ is an isomorphism, then 0 is 6tale 
x 

over 0 . Conversely, if f is ~tale at x, then $ is injective 
Y 

by (4.4) and surjective by (3.7). 

Pr0Dosition (4.6). - Let X and Y be locally noetherian 

schemes and f = X )Y a morphism locally of finite type. If f 

is ~tale at x ~ X, then f is ~tale in a neighborhood of x. 

Proof. The assertion holds with "~tale" replaced by "flat" 

(V,5.5) or by "unramified" (3.3). 

PrODosition ~4.7)(Le s orite for ~tale morDhisms). - 

(i) 

(ii) 

(iii) Any base extension of an ~tale morphism is 6tale. 

(iv) The product of ~tale morphisms is ~tale. 

(v) If gof is ~tale and if g is unramified, then f 

An open immersion is ~tale. 

The composition of 6tale morphisms is ~tale. 

is ~tale. 
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Proof. Assertions (i) , (ii) , (iii) , and (iv) each hold with 

"4tale" replaced by "flat" (V,2.7) or by "unramified" (3.5). As to 

(v) , consider the diagram with cartesian squares: 

y .  AY/S 
>YXsY 

- ~ X x  Y 

X ~f iS 

X 

Pr 2 
.... ~ Y 

gof 
>S 

Since g o f is 4tale, pr 2 is 4tale by (iii). Since Ay/s is an 

open immersion by (3.3) , Ff is 4tale by (i) and (iii). Therefore, 

f = Pr2o Ff is 4tale by (ii). 

Proposition (4.8). - Let S be a locally noetherian scheme, X 

and Y two schemes locally of finite type over S and f : X >Y 

an S-morphism. Let x be a point of X and s its image in S. 

Suppose X and Y are flat over S. Then f is flat (resp. 4tale) 

at x if and only if fs = f~sk(s) is flat (resp. ~tale) at x. 

Proof. The first assertion follows from (V,3.4) ; the second, 

from the first and (3.6(ii)). 

Proposition (4.9). - Let S be a locally noetherian scheme, x 

and Y two schemes locally of finite type over S and f : X ~Y 

an S-morphism. If f is ~tale, then the canonical map 

f,n~/S_~ 1 ; ~x/s 

is an isomorphism. 
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Proof. Consider the diagram with cartesian square 

X ~ Z ×S X 

A 
X/Y g ' 

y - 

h~-f xsf 

A 
Y/S 

1 
By (3.3) , AX/Y is an open immersion. Hence, by (1.21) , ~X/S = 

, v ,)). By the lemma below, N(g') = h'*(N(Ay/S)) = N(g'o AX/y) = A X/y(N(g 
v ~ I . 

and, by (1.21) , N(Ay/s) ny/S, whence, the assertion. 

Lemma (4.10). - Consider a cartesian diagram 

h '  

X' ~ g ~ > Y~ 

X ~ > y  
g 

where g and g' are immersions of schemes. If h is ~at, then the 

v 

induced map on conormal sheaves h'*N(g) >N(g') is an isomorphism. 

Proof. Let J be the quasi-coherent sheaf of ideals defining 

X as a subscheme of Y in a neighborhood U of X. Since h is 

flat, the sequence 

0 >J~OyOyw----~Oyt-----~Oxl >0 

is exact~ hence, J' = J~OyOy, is the ideal defining X' in h-l(u). 

Therefore the diagram 

S 0y, 

J'eOy,J, ,J' >~(g,) ~o 

yields the assertion. 
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5. Radicial morphisms 

Definition (5,1). - A morphism f : X )Y of schemes is said 

to be radicial if it is injective and if, for all x ~ X, the residue 

extension k(x)/k(f(x)) is purely inseparable (radicial). 

Proposition (5.2). - Let f : X 

The following conditions are equivalent: 

(i) f is radicial. 

(ii) For any field K, the map of K-points 

injective. 

(iii) (Universal injectivity) For any base extension 

morphism fy,: X×yY' )Y' is injective. 

(iv) (Geometric injectivity) For any field 

Spec(K)~ ~Y, the morphism fK: X~yK 

Proof. Assume (i) and for some field 

)Y be a morphism of schemes. 

f(K) : X(K) ~Y(K) is 

y t ~Y, the 

Conversely, assume (ii) and suppose k(x)/k(f(x)) were not 

purely inseparable for some x E X. Then there would exist two 

different k(f(x))-homomorphisms of k(x) into some field K. Let 

u I, u 2 : Spec(K) ~X be the corresponding morphisms. Then 

foul= fou 2, but u I ~ u 2. 

Suppose f(xl) = f(x 2) = y for distinct points xl, x 2 ~ X. 

Then there exists a field K and two k(y)-homomorphisms k(x I) OK 

and k(x 2) ~K. Let ul, u2: Spec(K) ~X be the corresponding 

morphisms. Then foul= fou 2, but u I / u 2. Therefore (i) holds. 

ul,u2: Spec(K) {X satisfy foul= fou 2. Since f is injective, 

x = Im(u I) = Im(u2). Hence, ul,u 2 corresponds to k(f(x))-homo- 

morphisms k(x)----~.K. Since k(x)/k(f(x)) is purely inseparable, 

ul= u 2 and (ii) holds. 

K, let 

K and any morphism 

, Spec(K) is injective. 
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Assume (ii). Then the diagram 

(XXyY') (K) = X(K) xy(K)Y' (K) 

i 1 
Y' (K) = Y(K) xy(K) Y' (K) 

shows that fy, also satisfies (ii). So, by (ii)~(i), fy, is 

injective and (iii) holds. The implication (iii) }(iv) is trivial. 

Assume (iv) and, for some field K. let ul~u2 ~ X(K) satisfy 

foul = fou 2. Then u I and u 2 give rise to sections 

ul,u ~ : Spec(K)~X@~. 

fr 
X©yK > Spee {K) 

/ 
X -- ) Y 

f 

Since f' is injective, X~ consists of a single point. It follows 

that u~ = u~, so u I = u 2. Thus, (ii) holds and the proof is complete. 

proposition ~5.3) (Le sorite for radicial morphisms). - 

(i) Any immersion, (in fact, any monomorphism), is radicial. 

(ii) The composition of radicial morphisms is radicial. 

(iii) Any base extension of a radicial morphism is radicial. 

Consequently, 

(iv) The product of radicial morphisms is radicial. 

(v) If gof is radicial, then f is radicial. 

(vi) If f is radicial, then fred is radicial. 

Proof. Assertions (i) , (ii) and (iii) follow immediately from 

(5.2) . 
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Lemma (5.4).- Let B be a noetherian ring and S a multipli- 

cative subset. Suppose the canonical map B )S-IB is surjective. 

Then for a suitable ring, C, the rings B and S-IB x C are isomorphic. 

Proof. Since the kexnel I of B )S-1B is finitely generated, 

(S-IB) - there is an s ~ S such that sI = O. Therefore, U = Spec is 

an open subscheme of X = Spec(B). Since B )S-IB is surjective, 

U is also closed. 

It follows that there exists a ring C such that the open 

subscheme X - U is equal to Spec(C). Then, B = S-IB x C. 

Theorem (5.5). - Let X and Y be locally noetherian schemes. 

Then a morphism f : X ......... )Y is an open immersion if (and only if) f 

is ~tale and radicial. 

Proof. Since f is flat, it is open by (V,5.1). Since f is 

also injective, it is a homeomorphism onto its image. It remains to 

show that, for each x ~ X, the map Of(x) ~Ox is an isomorphism. 

Set A = Of(x) and B = Ox®Of(x)Of(x). Since A is faithfully flat 

over Of(x), it suffices to show that A )B is an isomorphism 

Let m be the maximal ideal of A and n a maximal ideal of 

B containing mB. Then A )B is a local homomorphism and is 
n 

~tale andradicial by (4.7) and (5.3). Since the residue extension of 

B n over A is both separable and purely inseparable, it is trivial. 

Consider the commutative diagram 

A ) B 
n 

IJ I 
n 

)B is injective The map A ~Bn is an isomorphism by (4.5) and B n n 
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by (II,l.15). Hence, A -)B ~ )B and B )B is surjective. 
n n n 

Therefore, by (5.4) , for a suitable ring C, B ---- A x C. However, B 

is radicial over A, so Spec(B) )Spec(A) is injective! hence, 

Spec(C) = ~, C = O, and A -)B. 

Corollary .(5.6). An ~tale monomorphlsm is an open immersion. 

ProDQsition (5.7~. - Let S be a locally noetherian scheme, 

X and Y two schemes locally of finite type over S and f : X >Y 

an S-morphism. Suppose X and Y are flat over S. Then, f is an 

open immersion if and only if f~sk(s) : X~sk(s) ~Y~k(s) is an open 

immersion for all s ~ S. 

Proof. The assertion holds with "open immersion" replaced by 

"4tale morphism" (4.8) and by "radicial morphism" (5.1)! hence, the 

assertion follows from (5.5). 

6. Covers 

Definition (6.1). - Let X, Y be locally noetherian schemes 

and f : X >Y a morphism locally of finite type. Then X is said 

to be a (ramified) cover of Y (resp. f is said to be a coverinq 

(map)) if f is finite and surjective~ X is said to be an unramified 

(resp. flat, ~tale) cover of Y if, further, f is unramified (resp. 

flat, ~tale). 

Prop0sition (6.2). - Let X, Y be locally noetherian schemes. 

If X is a cover of Y, then dim(X) = dim(Y). 

Proof. It is clear that dim(X) = sup{dim(O x) }. Hence, replac- 

ing y by an open subset U (resp X by f-1(U)), we may assume that 

Y (resp. X) is affine with ring A (resp. B) and that B is a finite 

A-module. Then, it follows by induction from (III,2.2) that 

dim(B) = dim(A). 
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Definition (6.3).- Let X, Y be locally noetherian schemes and 

f : X )Y a morphism locally of finite type. The set of points of 

X where f is ramified is called the branch locus of X over Y. 

Remark (6.4). - The branch locus of X over Y has a natural, 

closed subscheme structure defined by the annihilator /y of ~X/y~ 

~X/Y is often called the K~hler different of X over Y. 

Remark (6.5). - Let A be a ring, E a finite, free A-module 

and h : E >E an A-homomorphism. If M(h) is the matrix of h 

with respect to some basis, then the trace of h, denoted tr(h) , is 

defined as the sum of the diagonal elements of M(h) and is clearly 

independent of the choice of basis If ~ : A )B is a ring 

homomorphism, then E~AB is a free B-module, h~idB: E~AB )F~DAB 

is a B-homomorphism and tr(h~idB) = ~(tr(h)). 

Let X be a cover of Y and F a coherent Ox-MOdule, flat 

over Y. Then the trace of an endomorphism g of F may be 

defined. Namely, by (V,2.8) , there exists an open affine cover V 

of Y such that f.FIv is free and the elements 

tr(g~_l(va )) ~ F(Va,O Y) piece together to give an element 

tr(g) ~F(Y,Oy). Furthermore, a map Tr : Endoy(f.F) >Oy exists 

where Tr V (g) is the trace of glv. In particular, if X is a flat 

cover of Y, then Trx/Y : f.Ox-----)O Y is defined as the composition 

of the canonical map f.O X ) Endoy(f.Ox) with Tr. 

There exists a map associated to Trx/Y, 

O v HOmoy(f.Ox u = astrx/Y : f.O X ~(f. X ) = ,Oy) , 

defined as follows: For an open set V of Y and elements 

a,b ~ F(f-l(V) ,Ox) , let UV(a) be the map taking b to 
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max - 
(Trx/Y)v(ab) ~ F(V,Oy). Let A ~,0 X denote the invertible sheaf 

equal to Arf, o X where f,O X has rank r. Then the section 

,Amax-f -V ~ AmaXu ~ Hom(Amaxf,o X [ ,O x) ) is called the discriminant and is 

denoted dx/Y. The image of dx/y~id : Amax f, OX~Amax f,Ox____ 9 Oy is 

called the discriminant ideal and denoted DX/Y. The set of points 

of Y where DX/Y is not equal to Oy is called the discriminant 

locus. 

Proposition (6.6). - Let X, Y be noetherian affine schemes 

with rings B, A and suppose B is a finite, free A-module. Then 

the following conditions are equivalent: 

(i) X is an ~tale cover of Y. 

(ii) The pairing (a,b)! )trB/A(ab) is nonsingular. 

(iii) The discriminant ideal DX/Y is equal to A. 

Proof. The equivalence (ii)~ > (iii) follows easily from the 

definitions. Since X is a flat cover, it is ~tale if and only if it 

is unramified; hence, by (3.6), if and only if for every y ~ Y, the 

n-dimensional k (y) -algebra B~gAk (y) is separable (unramified over k (y)) . 

Let k be the algebraic closure of k(y). By (6.5), the trace 

commutes with the base extension A )k; so, we may assume A = k 

r 
and, by (II,4.9), B = Ei=lB i where the B i are artinian local rings. 

Since trB/A = XtrB /A' we may assume r = 1; then, by (3.2),(3.3) and 
i- 

(3.4), it remains to show that the pairing is nonsingular if and only 

if B is a field. 

Let m be the maximal ideal of B~ By (II,4.7), there exists 

s s-1 
an s such that m = O, but m ~ O. If s = i, then B = k and 

trB/A(ab) = ab is clearly nonsingular. If s ~> 2, then since 

s-1 
B = k ~ m, it follows that trB/A(y ) = O for all y ~ m Let x 

s-1 
be a nonzero element of m s-/ Since xb ~ m for all b ~ B, 
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trB/A(Xb) = 0 for all b E B) so, the pairing is singular. 

Lemma (6.7) . - Let B be a semilocal ring and m l'...,m r 

maximal ideals of B. Then ; = ~B . 
m. 
1 

the 

Proof. Let q be an ideal of definition. It follows from 

(II,4.9) that B/q r = E(B/q r) 

( Z Z , l . 8 ) ,  ~ = =§ 
m ,  

I 

= KBm./qrB m Therefore, by 
m, 

Theorem _(6.8) (Purity of the branch locus). - Let X and Y be 

locally noetherian schemes. If X is a flat cover of Y, then the 

branch locus of X and Y has pure codimension I. 

Proof. Let x be a r~ified point of X and y = f(x). It 

suffices to show that 9Ox~y is contained in a height i prime of 

O x. Let B be the affine ring of ~ ~pec(Oy). Then B is a finite 

O -module) hence, a semilocal ring with radical m B (2.3). By 
Y Y 

= = where x. runs through the (I!,l.18) and (6.7), B~ 00y B ~x. l 
y x 

points of f-l(y) and, by (1.18) and (1.17) 4B/OySy fB/Oy , = A A  

= ~ ~ ) hence, ~x/~ = ~erefore, by (V,3.3) and 
x. y y 
1 

(III,l.8), we may assume 0 = 6 and 0 = ~ • 
x x y y 

By (2.4), 0 x is a flat cover of Oy! but, by (3.7), not 6tale. 

Hence, by (6.6), DOx/Oy¢ my. Therefore, by (III,l.lO and 5.8) , DOx/Oy¢ p 

where p is a height I prime of 0 . By (6.6), O is not ~tale 
y x 

over 0 at some prime q of 0 lying over p. By (V,2.10), q 
y x 

has height 1! whence, the assertion. 

Lemma (.6.9). - Let A be a ring, B an A-algebra and let t ~ B 

generate B over A. If P ~ A[T] is a polynomial such that 

d 
P(t) = O, then B/A ) P' (t)B where P' (T) = ~ P(T) $ furthermore, if 

the natural map A[T]/PA[T] >B is an isomorphism, then 0~/A = p, (t)B. 
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Proof. The canonical map A[T] >B is surjective! let I be 

its kernel. By (i.8) , the sequence 

2 ~ I I 
I/I ~A[T]/A~A B ) ~B/A > O 

is exact. Since, by (i.4), n~I[T]/A~AB_,.. = BaT, it follows that 

I d 
~B/A = B/d(1)B where d(I) ={~ Q(T)I Q(T) ~ I}. Hence, d(1) B = 

~B/A" Thus, ~B/A ) P'(t)B and, if I = PA[T], then d(I)B = P'(t)B! 

~B/ = P' (t) B. so A 

Proposition (6.10). - Let A be a noetherian ring, B an 

A-algebra, q a prime of B and p the trace of q in A. Suppose 

there exists a polynomial P(T) and an element t ~ B such that the 

map A[T]/PA[T] ~B defined by t is an isomorphism. Then Bq is 

unramified over A if and only if (P,P')Ap[T] = Ap[T]. Suppose, 
P 

in addition, that the leading coefficient of P is invertible. Then 

B is ~tale over A if and only if P'(t) ~ q. 
q P 

Proof. Since, by (6.9) , ~B/A = P'(t)B, it follows by (6.4) that 

Bq is unramified over Ap if and only if P'(t) is a unit in Bq! 

hence, if and only if (P,P')Ap[T] = Ap[T]. The second assertion 

follows from the first since, if the leading coefficient of P is 

invertible, then B is the free A-module generated by l,t,...,t n-I 

where n = deg (P) . 

Definition (6.11). - Let A be a ring. A polynomial P ~ A[T] 

is said to be separable if it satisfies the following two conditions: 

(a) The leading coefficient of P is a unit in A. 

(b) (P,P')A[T] = A[T]. 

Theorem (6.12). - Let A be a noetherian local ring, m the 

maximal ideal and k = A/m. Let B be a finite A-algebra, K = B~Ak 

and r = [K:k]. Suppose either that k is infinite or that B is 
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local. Then B is ~tale (resp. unramified) over A (if and) only if 

B is isomorphic to an ~tale algebra of the form A[T]/PA[T] (resp. a 

quotient of A[T]/PA[T]) for some separable polynomial P of degree r. 

Proof. It follows from the hypothesis that there is a primitive 

element u ~ K! say, 1,u .... ,u r-I form a basis for K over k. Let 

t ~ B be an element whose residue class is u. By Nakayamats lemma, 
r-i 

l,t .... ,t r-i generate B. If t r = ~. ai ti, then let P(T) = 
i=0 

= Tr --~ ai Ti.~-- From (6.10) applied K/k, it follows that 

(P,P')A[T] ~ A[T] mod mA[T]° Hence, by Nakayama's lemma, (P,P') 

generates A[T], so P is a separable polynomial. Finally, if B/A 

is ~tale, the assertion follows from (4.7) and {5.6) applied to the 

surjection A[T]/PA[T] )B. 



Chapter VII - Smooth Morphisms 

1. Generalities 

Definition (1.1). - Let X and Y be locally noetherian 

schemes and f : X )Y a morphism. Then X is said to be smooth 

over Y at x ~ X (resp. f is said to be smooth at x) if there 

exists a neighborhood U of x and a commutative diagram 

U. 9 ~A$,--//~ ~. Y 

Y 

where g is ~tale and p is the projection on the second factor. 

(The morphism p is sometimes called a polynomial morphism). The 

scheme X is said to be smooth over Y (resp. f is said to be smooth) 

if f is smooth at every x ~ X. 

Remark. (1.2). - The points x ~ X at which a morphism 

f : X )Y is smooth form an open set. 

Definition (1.3). - Let f : X )Y be a morphism of schemes 

and x a point of X. The relative dimension of X over Y a_~t x 

(resp. o_~f f at x) is defined as the largest dimension of the 

components of f-l(f(x)) passing through x and is denoted dimx(X/Y) 

(resp. dimx(f)). 

ProPosition (1.4). - In the definition of smoothness, 

n = dim (f) 
x 

Proof. Changing the base, we may assume, by (VI,4.7), that 
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Y = Spec(k(y)) where y = f(x). Then since dim(~(y)) = n by 

(III,2.6), the assertion follows from (V,2.±O) and (VI,2.3) applied to g. 

Remark (1.5) .... - If f : X 

dim (f) = O for all x ~ X. 
x 

Proposition (1.6). - Let X, Y be locally noetherian schemes. 

A morphism f : X >Y is ~tale if and only if it is smooth and 

quasi-finite. 

Proof. As f is quasi-finite, dimx(f) = 0 by (1.5)! hence, 

the assertion follows from the definition of smoothness and (1.4). 

ProoQsition (1.7). (Le sor~te for,smooth morphisms~=. - 

(i) An open immersion is smooth. 

(ii) The composition of smooth morphisms is smooth. 

(iii) Any base extension of a smooth morphism is smooth. 

Consequently, 

(iv) The product of smooth morphisms is smooth. 

Proof. 

(i) An open immersion is 4tale. 

(ii) Since smoothness is local on X, it suffices to consider a 

commutative diagram with cartesian square 

Since h' is a base extension of h, h' 

~tale, h'o g is ~tale by (VI,4.7). 

~Y is a quasi-finite morphism, then 

X 

/ ~  "\ h' 

[ \ \  v/ , .  

/ 
Z 

is ~tale! so, since g is 
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(iii) Again, it suffices to consider a commutative diagram with 

cartesian squares. 

X' g' >/~y, P' ~y, 

n p 

Since g is ~tale, it follows by (VI,4.7) that g' is ~tale. 

Theorem (1.8). - Let X, Y be locally noetherian schemes, 

f : X----)Y a morphism locally of finite type, x a point of X and 

y = f(x). Then f is smooth at x if and only if the following two 

conditions hold: 

(a) f is flat at x. 

(b) f-l(y) is smooth over k = k(y) at x. 

Proof. If f is smooth at x, then (b) holds by (1.7). Since 

an 6tale morphism and a polynomial morphism are each flat, f is flat 

by (V,2.7). 

To prove the converse, we may assume that X, Y are affine 

with rings B, A, and that there exists a factorization of 

fy, f-1(y) gY )/Ank .-Spec(k) where gy is ~tale. If gy is 

defined by n functions gy,i ~ B~Ak, then replacing gy,i by agy,i 

for a suitable a ~ k, we may assume that the gy,i are images of 

functions gi ~ B. Then we have the commutative diagram with cartesian 

squares 

gy n 
Spec 

X g ~ , ~ n  y )Y 

n where g is the morphism defined by the gi ~ B. Since X and ~y 
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are flat over Y and gy is etale, it follows from (VI,4.8) that 

g is 6tale. 

CQroll~ry (1.9). - Let S be a locally noetherian scheme, X,Y 

schem~s locally of finite type over S. Let f:X ~ Y be an S-morphism, x a 

point of X with image s ~ S. Suppose Y is flat over S. Then f 

is smooth at x if (and only if) the following two conditions are 

satisfied: 

(a) X is flat over S at x. 

(b) f : X )Y is smooth at x. 
s s s 

Pro____~f. By (VI,4.8) , f is flat at x. However, fy= fs@~(y) 

so, f-l(y) is smooth by (1.7) and the assertion follows from (1.8). 

2. Serrets criterion 

Definition (2.1). - A locally noetherian scheme X is said to 

satisfy condition ~ if X is regular in codimension ~ k or, equi- 

valently, if the singular locus has codimension > k! X is said to 

satisfy condition S k if, for all x ~ X, 

depth(O x) ~ inf{k ,dim (O ) }. 
x 

A noetherlan ring A is said to satisfy ~ (resp. S k) if X = Spec (A) 

satisfies ~ (resp. Sk). A locally noetherian scheme X is said to 

satisfy ~ (resp. S k) at x if O x satisfies ~ (resp. Sk). 

Proposition (2.2). - Let X be a locally noetherian scheme. 

Then: 

(i) If k' ~ k, then Sk, implies S k and ~, implies ~. 

(ii) X satisfies S k for all k if and only if X is Cohen-Macaulay. 

(iii) X satisfies ~ for all k if and only if X is regular. 

(iv) X satisfies S I if and only if X has no embedded components. 

(v) X satisfies R 0 if and only if X is generically reduced 

(i.e., reduced in a neighborhood of each generic point). 
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(vi) X satisfies R O and S I if and only if X is reduced. 

Proof. Assertions (i) , (ii) and (iii) are trivial. To prove 

(iv), note that X satisfies S I if and only if depth(0x) ~ i for 

all x ~ X which are not generic points. On the other hand, 

depth(O x) = 0 if and only if x ~ Ass(O x) by (III,3.11). Hence, X 

satisfies S i if and only if every x £ Ass(O X) is generic, i.e., 

if and only if X has no embedded components. 

To prove (v) , note that X satisfies R O if and only if X 

is generically regular and that X is generically regular if and 

only if X is generically reduced. Finally, to prove (vi) , it 

suffices, in view of (iv) and (v), to prove the following lemma. 

Lemma (2:3). - A locally noetherian scheme X is reduced if 

and only if it is generically reduced and has no embedded components. 

Proof. Since the statement is local, we may assume X is 

affine with ring A. Then, by the weak Nullstellensatz (II,2.8) , A 

is reduced if and only if O = Npi where the Pi are minimal primes. 

However, by (II,3.17) , {pi } is an irredundant primary decomposition 

of 0 if and only if each A is reduced and all essential primes 
Pi 

of O are minimal. 

Definition (2.4). Let A be an integral domain with quotient 

field K. Then A is said to be a discrete (rank I) valuation rinq if 

A = {x ~ K'Iv(x) ~ O} u {0} 

K* to Z satisfying: 

(i) v(xy) = v(x) + v(y) 

where v is a surjective function from 

for all x,y ~ K*. 

(ii) v(x+y) i> inf{v(x),v(y)} for all x,y ~ K*. 

An element t ~ A is called a uniformizinq parameter if v(t) = I. 
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Lgmma (2.5). - Let A be a discrete valuation ring and t a 

uniformizing parameter. Then every nonzero ideal I of A is 

generated by t r for some r ~ O! in particular, A is a local 

noetherian domain. 

Proof. Let y ~ I have the property that r = v(y) is minimal, 

and let u = y/t r. Then v(u) = O, so u is a unit of A. Hence, 

t r u -I = y ~ I. If x e I, then x = trx ' where v(x') ~ O. Hence, 

I = trA. 

Proposition (2~6). - Let A be a local noetherian domain with 

maximal ideal m. Then the following conditions are equivalent: 

(i) A is a discrete valuation ring. 

(ii) A is principal and is not a fie%d 

(iii) A is normal (i.e., integrally closed in its quotient field) 

and dim(A) = I. 

(iv) A is normal and depth(A) = i. 

(v) m = tA for some nonzero t ~ A. 

Proof. The implication (i)---> (ii) follows from (2.5) and 

(ii) ~ (iii) is easy. Since A is a domain, depth(A) i> i I 

so, by (III,3.15) , (iii) ~ (iv) . 

Assume (iv). Then there exists an element x E m such that 

m E Ass(A/xA) by (III,3.10) and 3.11). Hence, there exists y e A, 

-I -i 
y / xA and such that my ¢ xA. Then myx ¢ A and yx ~ A. 

-I -I 
It follows that myx = A. For, otherwise, myx = m and, since 

-I 
m is finitely generated, yx would be integral over A. Since 

-I 
A is normal, yx would be in A. Hence, there exists t e m such 

that tyx -I = i. Now, if z e m, then t(yx-lz) = z and yx-lz ~ A~ 

hence (v) holds. 
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Assume (v) If y ~ m r m r+l . - , define v(y) = r. Since, by 

Krull's intersection theorem (II,l.15) , Nm r= O, v(y) is defined for 

all nonzero y in A. Clearly, v(x+y) I> inf{v(x),v(y)) for any 

x, y ~ A. Further, since m r = trA, if v(y) = r, then y = ut r for 

u ~ A* and it follows that v(xy) = v(x) + v(y)! so, A is a discrete 

valuation ring. 

Proposition (2.7). - Let A be a noetherian ring which is 

reduced and integrally closed in its total quotient ring K. Then A 

is a product of normal domains. 

Proof. By (2.3), 0 has no embedded essential primes! so, by 

(II,3.17 and 4.7), K is artinian. By (II,4.9), K = ~K. where the K. 
1 1 

are f i e l d s .  I f  e .  = (0  . . . .  0 , 1 , 0 , . . . 0 )  w i t h  1 i n  t h e  i t h  p l a c e ,  
1 

2 
then e i - e i = 02 so, since A is integrally closed, ei~ A. There- 

fore, A = ~Ae.. 
1 

Lemma (2.8). - If a local ring A has the form A = Alx...XAr, 

then r = I. 

Proof. Let m be the maximal ideal of A and e.= 
1 

= (O,... ,0,1,O .... O) with I in the ith place. If r > 1, then 

e.eo = 0 for i / j~ so, all e.~ ms hence, I = e I + ... + e ~ m, 
3 I r 

a contradiction. 

Corollary (2.9). - A reduced noetherian local ring which is 

integrally closed in its total quotient ring is a normal domain. 

L emm a (2.10). - Let A be a noetherian ring and K its total 

quotient ring. If p runs through all primes such that depth(Ap) = 1, 

then the sequence A >K u ,EKp/Ap is exact. 

Proof. Let b ~ A be a non-zero-divisor. If p is an essential 
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prime of bA,then, by (II,3.9,III,3.10 and III,3.11) , depth(Ap) = i. 

Thus, if a/b ~ ker(u) , then a ~ bA for all essential primes of hA! 
P 

hence, by (II,3.17) , a ~ bA and a/b ~ A. 

quotient ring of A. 

(i) 

(ii) 

(iii) A 

Theorem (2.11). - Let A be a noetherian ring and K the total 

Then the following conditions are equivalent: 

A satisfies R 1 and 

A satisfies R 1 and 

height I, then the sequence A----~K >HK~Aq 

is reduced and integrally closed in K. 

S 2 . 

S 1 and, if q runs through the primes of 

is exact. 

Proof. By (2.2~, A is reduced and satisfies R O and S 1 under 

all three conditions. The implication (i)~-~(ii) follows from (2.10) 

and (2.6). 

If c ~ K is integral over A, then its image c ~K is 
q q 

integral over A for any prime q. If q has height I, then, by 
q 

R 1 and (2.6), Aq is normal~ thus, Cq~Aq. Hence, if (ii) holds, then 

c ~ A and (iii) holds. The implication (iii)~ (i) follows from 

(2.9) and (2.6). 

Corollary (2.12). - Let A be a noetherian domain. Then the 

following conditions are equivalent: 

(i) A is normal. 

(ii) For all height 1 primes p, A is regular and the essential 
P 

primes of each nonzero element have height I. 

(iii) For all height I primes p, A is a discrete valuation ring 
P 

and A = NA as p runs through the height 1 primes. 
P 

CQrollary 12.13) (Serre's criterionS. - A locally noetherian 

scheme X is normal if and only if it satisfies R 1 and S 2. 

Proof. The assertion follows from (2.11) and (2.9). 
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Corollary (2.14). - Let Y be a Cohen-Macaulay scheme and X 

a closed subscheme which is regularly immersed in Y. If X satis- 

fies R I , then X is normal. 

Proof. The assertion follows from (III,4.5) and (2.13). 

Definition (2.15). - A domain A is said to be factorial (or 

a unique factorization domain) if every element f has the form Hf. 
i 

where the f. are irreducible elements and the (prime) ideals f.A 
1 I 

are uniquely determined by f. A locally noetherian scheme is said 

to be locally factorial if the local ring of each point is factorial. 

proposition (2,16). - Let A be a noetherian domain. Then A 

is factorial if and only if every height I prime is principal. 

Proof. Suppose A is factorial and let p be a prime of A. 

If f = Hfi E p where the f.t are irreducible elements, then f.1 ~ p 

for some i Thus, if p has height I, it follows that p = f.A. 
I 

Conversely, let f be a nonzero element of A and {fi A} 

the set of essential primes of fA having height 1. Choose integers 

r i inductively ~s follows~ G%ven rl,...,r[_ i, let r. be the largest 
i r. r. 

integer such that j~l fj 31f" Then u = f/nfj 3 ~ A and uA is 

easily seen to have no essential primes of height I. By Krull's 
r. 

theorem (III,l.lO), u is a unit and f = u-lKf.3~ so, A is 
3 

factorial. 

Remark (2-17~- - It is easily seen that a factorial domain is 

normal. 

3. Divisors 

Definition (3.1). - Let X be a locally noetherian scheme and 

J(X) the set of reduced irreducible closed subschemes W of X of 
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codimension i. A divisorial cycle (Well divisor) is a formal sum 

nwW in which the set of generic points of those W such that 
w~J(X) 
n W / O is locally finite. An element of J(X) is called a prime 

divisorial cycle! a divisorial cycle is said to be positive if all 

i> O~ the group of divisorial cycles is denoted ~i(X) n W o 

Definition (3.2). - Let X be a ringed space. The sheaf of 

meromorp.hic functions K x is defined as the sheaf associated to the 

presheaf whose sections over an open set U are the elements of the 

total quotient ring of F(U,Ox), A (Cartier) divisor D is defined as a 

global section of the sheaf ~/Ox, (where, if A x is a sheaf of rings, 

denotes the (abelian) sheaf whose sections are the units of AX) . The 

group of divisors is denoted Div(X). For each f ~ F(X,~), let (f) 

denote the image of f in Div(X). 

Rgmark (3.3). - Let X be a ringed space. A divisor D is 

represented by an open covering {U } of X and local equations 

fa~ F(U ,~) such that fs/f~ E F(UanU~,O~) ! two such collections 

{Ua,f a} and {V~,g~} represent the same divisor if and only if there 

{w } ~ r(wy,o~) such exists a common refinement and elements hy 

UsnV ~ , = g~hy . that, if W¥ c then fs on W¥ 

Remark (3.4).- Let X be a ringed space. A divisor D defines 

an invertible sheaf Ox(D) , contained in KX: If {Us,fs} represents 

D, then O X(D) IU s = f~lOxlU a ¢ KxlU s. 

Definition (3.51 . - Let X be a ringed space. A divisor D 

is said to be effective (positive) if any one of the following equi- 

valent conditions holds: 

(i) If {Us,f a} represents D, then the local equations f are 
s 

sections of O X. 
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(ii) 0 x ¢ Ox(D) ¢ K x. 

(iii) Ox(-D) is a sheaf of ideals. 

Remark ~3~6). - Let X be a scheme and D an effective 

divisor. Then there is an exact sequence 

O .......... ~Ox(-D) >Ox---~O D >0 

and 0 D is the structure sheaf of a closed subscheme, denoted Supp(D), 

(or, simply D). 

Definition (3.7). - Let X be a ringed space. The Picard 

group of x, denoted Pie(X) , is defined as the group of isomorphism 

classes of invertible sheaves on X. 

Remark (3.8). - Let X be a ringed space. 

that Pie(X) = ~i(X,O~) [7~ Oi, 5.4.7). 

sequence 

o x- N , K20 x ,o 

yields an exact sequence 

6 
F (X,~) -~Div (X) ------~P ic (X) 

where 6(D) = 0x(D ) . Hence if 

sheaf comes from a divisor. 

It is easily seen 

Furthermore, the exact 

7 

~i(X,Kx)= O, then every invertible 

Suppose X is noetherian and satisfies S I. Let A be an 

affine coordinate ring of X. Then, by (2.2), all essential primes p 

of A are minimal! so, by (II,4.7), the total quotient ring K of A 

is artinian and, by (II,4.9) , K = EKxo as x O runs through all generic 

points of Spec(A). Thus, ~= n(iXo,)K' where, if x 0 is a generic 
~0 

point of X, then K'xo is the constant sheaf of Kxo on {Xo } and 

iXo: Spec (Oxo) ~ X is the canonical immersion. Therefore, 

F (X,Kx) = EKxo as x O runs through the generic points of X and 

Hi(x,~) = O. 
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Definition (3.9). - Let X be an R 1 locally noetherian 

scheme. Then the cycle map, cyc : Div(X) ) ~(X), is a homomorphism 

defined as follows: If W is a prime divisorial cycle, then, at the 

generic point w of W, the local ring 0 is a discrete valuation ring by 
W 

(2.6) ! let v W be the associated valuation. If D ~ Div(X) , let 

fw E K*w be a local equation of D at w and define Vw(D) as Vw(fw) 

and cyc(D) as ZVw(D)W. A divisorial cycle is called logally 

principal if it is of the form cyc(D). 

Proposition (3.10). - Let X be a normal, locally noetherian 

scheme and D a divisor. Then: 

(i) D is effective if (and only if) cyc(D) is positive. 

(ii) cyc is injective. 

(iii) cyc is bijective if and only if X is locally factorial. 

Proof. Let x be a point of X and f ~ K a local equation 
x 

of D at x. If cyc(D) ~ O, then, for each height I prime p of 

A = 0 , f ~ A . So, by (2.12), f ~ A = AA and D is effective. If 
x p p 

cyc(D) = 0, then both D and -D are effective! hence, f ~ A* and 

D = O. Thus (i) and (ii) hold. 

To prove (iii) , let x be a point of X and p a height 1 

prime of 0 x. Then p defines a prime divisorial cycle W. If 

W = cyc(D) for some divisor D, let f be a local equation of D at 

x. Then, by (i) f ~ O x. Let {ql}~= I .  be an irredundant primary 

decomposition of fA (II,3.14). Since A is normal, each essential prime of 

fA has height I by (2.±2). By localization (II,3.17), it follows 

that r = 1 and (f) = p. Hence, by (2.16), X is locally factorial. 

Conversely, suppose X is locally factorial. Then, by (2.16), 

a prime divisorial cycle W is "cut out" at each x ~ X by some 
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element f ¢ 0 . The f are easily seen to define a divisor D 
x x x 

such that cyc(D) = W. By linearity, cyc is therefore surjective. 

Lemma (3.~I). - Let A be a noetherian local domain of 

depth 9 2. Let X = Spec(A) , x be the closed point of X and 

U = X - {x}. If U is locally factorial and Pic(U) = O, then A is 

factorial. 

Proof. Since U is locally factorial, it is normal! so, by 

Serre's criterion (2.13), it satisfies R i and S2! hence, since 

depth(A) 9 2, X satisfies R 1 and S 2. By (2.13), A is normal. 

Any height i prime p of A defines a prime divisorial cycle 

W on X. Since U is locally factorial, WIU is locally principal 

by (3.10). So, since Pic(U) = O and U is reduced, WIU is the 

divisor of a rational function f by (3.8). By (III,3.15), 

dim(A) >I depth(A) I> 2. So, since f has no poles on U, f has no 

poles on X! hence, since A is normal, f £ A by (2.12). Let {qi }r 
i=l 

be an irredundant primary decomposition of fA. Since A is 

normal, each essential prime of fA has height 1 by (2.12). By 

localimation, it follows that r = i and fA = p. Hence, by (2.16), 

A is factorial. 

Proposition (3.12). - Let X be a local ringed space and 

O )F' ) F---~F" ) O 

an exact sequence of locally free Ox-MOdules of finite rank. Then 

there exists a canonical isomorphism 

Amax F, ~ AmaxF,, ~ )AmaxF. 

Proof. Choose an open cover {U a} of X such that 

FIU a = F'IU a ~ G~ where Ga is a free O U -Module. The canonical 
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isomorphisms v s : G s )F"IU s and 

yield an isomorphism 

(AmaxF,IUa)®(AmaxGs) ~ ~AmaxFIUa 

max u s : (AmaxF')®(AmaxF")IUs , ~A FIU a. 

It remains to s~ow that u s and u~ coincide on UaN U~. 

On UaQ U~, we have v s = v~o w~a where w~a : G s )G~ 

the "projection parallel to F' " defined as follows: For each 

is 

section s ~ P(UaN U~,Ga), w~s(s) = s+t~a(s) with t~a(s) e F(UaNU~,F'). 

However, then u a = u~o det(z~s ) where z~s : F ! ~ M a )F' • M~ is 

given by (id t~a ) . Thus, det(z~s) = id and u = u~ on U A U~. 
O id s 

L@mma (3.!3) [7]. IV,I~7.7). - Let X be a quasi-compact, 

quasi-separated scheme and U a quasi-compact open subset. Then, for 

each quasi-coherent (OxIU)-Module F of finite type, there exists a 

quasi-coherent Ox-MOdule G of finite type such that GIU = F. 

Theorem (3.14) (Auslandgr-Buchsbaum) . - A regular local ring 

A is factorial. 

Proof.(Kaplansky). If the dimension r of A is zero, then 

A is a field~ if r = I, then, by (2.6), A is principal, so factorial. 

Assume r ~ 2. Let X = Spec(A) , x be the closed point of X and 

U = X - {x}. If y a U, then O is regular by (III,5.15 and 5.16) and 
Y 

dim(Oy) < r$ hence, U may be assumed locally factorial by induction 

on r. Since A is regular, by (III,4.12), depth(A) = dim(A) ~ 2. 

Let L be an invertible Ou-MOdule. By (3.13) , there exists a 

coherent Ox-MOdule F such that FI U = L. Since A is regular, 

gl.hd(A) = r by (III,5.11)| hence, there exists a resolution 

h r 
0 ,0 X ~ ... >0 X >F ----90. 
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It therefore fo1_lows from (3.12) that L = 0 U 

so, by (3.11) , A is factorial. 

Hence, Pic(U) = O| 

Corollary (3~15). - Let X be a regular scheme and Y a closed 

subscheme of pure codimension I. Then Y is normal if (and only if) 

Y satisfies R I. 

Proof. The assertion follows immediately from (2.13),(III,4.5) 

and (III,4.12). 

4. Stability 

Lemma (4.1). - Let ~ : A ) B be a local homomorphism of 

noetherian rings, k the residue field of A, and u : M )N a 

B-homomorphism of finite B-modules. Suppose N is a flat A-module. 

Then the following conditions are equivalent: 

(i) u is injective and C = coker(u) is A-flat. 

(ii) u~l ~ M~Ak )N~Ak is injective. 

Proof. Assume (i). Then the sequence O---->M u )N ~C TO 

is exact and yields the exact sequence 

Tor CC,k  , Ak uel  NeA . 

Since C is A-flat, u~l is injective. 

Conversely, the exact sequence 0 .... ~u (M) )N ) C 

yields the exact sequence 

O )Tor A (C ,k) ~ u (M) ~A k ) N~Ak. 

Assume (ii). Then the natural surjection M~Ak )u(M)~Ak 

so, by the exact sequence, TorA(c,k) = O. jective~ 

local criterion (V,3.2) , C is flat over A. 

~0 

is hi- 

Hence ,by the 
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Since N and C are flat, it follows that u(M) is flat. 

Let K = ker(u). Then the exact sequence, O )K--~M---~u(M) >O 

yields the exact sequence 

O )K~Ak ~ >M~Ak u~l > u (M) ~Ak- 

Since u®l ~s injective, K~Ak = O. Since ~ is a local homomorphism 

and ~(m)K = K, it follows from Nakayama's lemma that K = O. 

Proposition (4.2). - Let A, B be noetherian local rings, k 

the residue field of A,~ : A >B a local homomorphism, M a 

finite A-module and N a finite B-module. Suppose N is a flat 

A-module. Then 

depthB(M~AN) = depthA(M) + depthB~Ak(N~Ak) 

P rpQf. By (III,3.15) , we may assume M ~ 0 and N ~ O. 

Suppose depthA(M) = O and depthB~Ak(N~Ak) = O. Let m (resp. n) 

be the maximal ideal of A (resp. B). By (III,3.11), m ~ ASSA(M) 

and, by (III,3.11 and 3.16) , n ~ ASSB(N~Ak). By (II,3.2) , there 

exists an exact sequence O )k )M! so, since N is A-flat, the 

0 ~ ~N~Ak ~N~AM is exact. Hence, n ~ ASSB(N~A k) ¢ sequence 

ASSB(M~AN) and depth(M£AN) = O. 

Suppose depthA(M) > O Let x ~ m be M-regular, M' = M/xM, 

N' = N/xN, A' = A/xA and B' = B/xB. Since N' = N~AA', N' is 

A'-flatl furthermore, N'~A,k = N~Ak and M'~A,N' = (M~AN)/x(M/gAN)- 

By (III,3.10 and 3.16) , depthA,(M') = depthA(M)-I and 

depthB,(M'~A,N') = depthB(M~AN)-l. Thus, the formula follows by 

induction. 

Suppose depthB~k(N~Ak) > O, Let y ¢ n be (N%k)-regular 

and N' = N/yN Then (4~1) implies that the sequence 
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0 ;N Y>N >N' ----~0 

is exact and that N' is A-flat~ it follows that y is (M/gAN)- 

regular. Since (N~Ak)/y(N~Ak) ~ N'~Ak and (M~AN)/y(M~AN) ~ 

M~AN', (III,3.10) implies that depthB~Ak(N'~Ak) = depthB~Ak(N~Ak)-I 

and depthB(M~AN') = depthB(M~AN)-l. Thus the formula follows by 

induction. 

P ropositiQn (4.3). - Let ~ : A )B be a local homomorphism 

of noetherian rings. Suppose B is flat over A. Then gl.hd(A) 

gl.hd (B). 

Proof. We may assume q = gl.hd(B) is finite. Let M, N be 

two A-modules~ Clearly, TorA+I (M ,N) %B = TorB+l (M~AB,N%B) , which 

is zero by hypothesis. By (V,l.6), B is faithfully flat over A~ 

by (V,l.4), TorA+I(M,N) = O. Hence, by (III,5.7 and 5.9) so~ 

gl.hd(A) ~< q. 

Lemma (4~4) o - Let A be a ring, A[T] the polynomial ring 

in one variable and M an A[T]-module. Then proj.dimA[T](M) 

proj.dimA(M) + 1. 

Proof. Set M[T] = M~gAA[T ] and consider the sequence 

0 >M[T] f >M[T]. g ~M ~O 

where f(x~a) = x~Ta - Tx~a and g(x~a) = ax. Clearly, g is sur- 

jective and g o f = O. If g(Zxi~Ti) = O, then 

Ti-lxi~l) .~T i-2 + + ~ so, the sequence E xi~Ti = f(Zxi~gT i-I + Tx I ... 

• xd~d+l is exact in the middle. If f(Exi~l) = O, then = 0 where 

d is the largest integer such that Xd~Td ~ O~ hence, f is injective 

and the sequence is exact. 
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It follows from (III,5.2) that proj.dimA[T](M) 

proj.dimA[T](M[T]) + I. Finally, since A[T] is flat, it follows 

easily from the definition that proj.dimA[T](M[T]) ~ proj.dimA(M ) . 

Theorem (4 5). - Let A be a regular ring. Then the poly- 

nomial ring A[T 1 .... ,Tr] is regular. 

Proof. By induction, we may assume r = 1| by (4.4), 

gl.hd(A[T]) ~ gl.hd(A) + 1, so the assertion follows from (III,5.18). 

Proposition (4.6). - Let ~ : A ~B be a local homomorphism 

of noetherian rings and M a finite B-module. Let m be the maxi- 

mal ideal of A, (x I ..... x r) an A-regular sequence of m and 

I = xlA + ... + XrA. Then M is A-flat if (and only if) M/IM is 

(A/I)-flat and the sequence (x I ..... x r) is M-regular. 

Proof. By (III,3 4), the homomorphisms 

(M/IM)[T 1 .... T r] ) gr~(M) and (A/I) [T 1 ..... Tr] ) gr~(A) are 

bijectives hence, the canonical homomorphism (M/IM)~A/Igr~(A)~ gri(M) 

is bijective Therefore, M is A-flat by the local criterion 

(V,3.2). 

Theorem (4.7). - Let A,B be noetherian local rings, k the 

resid1~e field of A, and ~ : A )B a local homo~orph[sm. Then 

the following conditions are equivalent: 

(i) A and B are regular and, if x I ..... x r are regular para- 

meters of A, then Yl = ~(xl) ..... Yr = ~(Xr) are regular 

parameters of B. 

(ii) B and B~Ak are regular and B is flat over A. 

(iii) A and B~gAk are regular and B is flat over A. 

(iv) A and B~Ak are regular and dim(B) = dim(A) + dim(B~Ak). 
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Proof. If r = dim(A), then, by (III,4.il) and (4.6), condition 

(iii) is equivalent to the condition 

(iii') A is regular, and if x I ..... x r are regular parameters of 

A, then Yl = ~(xl) ..... Yr = @(Xr) form a B-regular sequence 

and B/(YlB + ... + yr B) is regular. 

Now (i) and (iv) are equivalent by (III,4.10) ~ furthermore, 

(iii) implies (iv) by (V,2.11) and (i) implies (iii') by (III,4.11 

and 4.10). Hence, (i) , (iii) and (iv) are equivalent. Clearly, (i) 

and (iii) together imply (ii) and (ii) implies (iii) by (4.3) and 

(III,5.11 and 5.15). 

Theorem (4.8). - Let X,Y be locally noetherian schemes and 

f : X >Y a faithfully flat morphism. Then: 

(i) If X satisfies R k (resp. Sk) , then Y satisfies R k (resp. Sk). 

(ii) Suppose that, for each y ~ f(X) , the scheme f-l(y) satisfies 

R k (resp. Sk). If Y satisfies R k (resp. Sk) , then X 

satisfies R k (resp. Sk). 

Proof. To prove (i), let y be a point of Y and x a 

generic point of f-l(y). Then, dim(Ox~9 0 k(y)) = O! so, by (V,2.11) , 

Y 
dim(O x) = dim(Oy). However, if 0 x is regular, then, by (4.3), Oy 

is regularl thus,if X satisfies Rk, then Y satisfies R k. 

Furthermore, by (III,3.15), depth(Ox~90 k(y)) = O~ so, by (4.2) , 

Y 
depth(O x) = depth(Oy) ~ thus, if X satisfies S k, then Y satisfies 

S k • 

To prove (ii) , let x be a point of X and y = f(x). Then 

it suffices to show that, if dim(O x) < k, then 

(resp. that depth(O x) i> inf{k,dim(Ox)}). Since 

(V,2.11) , 

0 is regular 
x 

depth (0 x) 

f is flat, by 

dim(O x) = dim(Oy) + dim(Ox~) 0 k(y)) (resp. by (4.2), 
Y 

= depth(Oy) + depth(Ox~ O k(y)))! hence, if dim(Ox) < k, 
Y 
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then, a fortiori, dim(Oy) < k and dim(Ox~ 0 k(y)) < k, and, by 
Y 

hypothesis, Oy and Ox~ O k(y) are regular. So, by (4.7), O x is 
Y 

regular! thus, X satisfies ~. Similarly, depth(Ox). ~> 
inf{k,dim(Oy)} + inf{k,dim(Ox~ 0 k(y))} ~> inf{k,dim(Ox)}; thus, X 

Y 
satisfies S k. 

Theorem (4~9). - Let X,Y be locally noetherian schemes and 

f : X ~Y a surjective, smooth morphism. Then X satisfies 

(resp. S k) if and only if Y satisfies R k (resp. Sk). Consequently, 

X is generically reduced (resp. without embedded components, re- 

duced, regular, Cohen-Macaulay, normal) if and only if Y is. 

Proof. Since f is faithfully flat, the assertion follows 

easily from (4.8), (4.5) , (III,4.12), (2.2) and (2.13). 

5. Differential properties 

Theorem (5.1). - Let S be a locally noetherian scheme, X,Y 

two schemes locally of finite type over S and f : X ~Y an 

S-morphism. Suppose f is smooth at x ~ X. Then: 

* 1 1 1 
(i) At x, the sequence O- >f ~y/s-->~X/S---~X/y 

and split. 

I 
(ii) At x, nX, Y/ is free of rank n = dimx(f). 

>O is exact 

Proof. Since all properties are local on X, we may assume f 

is a composition X g >AS • P)Y where g is ~tale. By (VI,I.19) , 

. 1 ~ 1  , f~l  the sequence 0 'w >p ~y/s-'--'-~/~n/s__ 2 /~y >0 exact and split. 

Applying g*, we obtain the split, exact sequence 

..,~,oI ~> g,~l >g*Rl n > O. 
0 "~ ~ "'Y/S--- /~y/S /~y/Y 

. . 1  * 1 
However, g p ~Y/S = f ~Y/S' and, since g is ~tale, g,~l 

Ay/S 
~ 1 

~x/s 
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* 1 , ~  G1 and g ~n/y > X/Y by (VI,4.9) S whence (i). Finally, it follows 

I 
from (VI,I.4) that ~X/Y is free of rank n. 

Propositio n (5.2). - Let S be a locally noetherian scheme, 

X,Y two schemes locally of finite type over S and g : X ...... ~Y an 

S-morphism. Suppose X and Y are smooth over S. Then g is 

_.^1 ~^ I  
~tale at x ~ X if (and only if) the canonical map ~ ~y/s---~. ~X/S 

is an isomorphism at x. 

Proof. The conditions are local, so we may assume that X and 

Y are affine and that the map g,~l___>~l is an isomorphism. 
Y/S x/s 

I 
By (VI,I.6), nX/Y = Oi hence, by (VI,3.3), g is unramified at x. 

Thus, it remains to prove g is flat. Let s be the image of x 

in S and k = k(s). By (VI,4.8), we may assume S = Spec(k) and 

that X and Y are algebraic k-schemes. By (V,5.5), g is flat on 

an open set! hence, the closed points of an algebraic scheme being 

dense (III,2.8), we may assume x is closed. Since k is regular, 

X and Y are regular by (4.8). Since g is quasi-finite, it 

suffices, by (V,3.6) to show that dim(O x) = dim(0g(x)). Since x 

is closed, it follows from (III,2.6) that dimx(X/S) = dim~Ox) and 

dimg(x ) (Y/S) = dim(Og(x )) . The contention now follows from (5.i,(ii)) 

and the hypothesis. 

Theorem (5.3). - Let S be a locally noetherian scheme, 

X,Y two schemes locally of finite type over S and f : X ~Y an 

S-morphism locally of finite type. Let x be a point of X and 

y = f(x). Suppose Y is smooth over S at y. Then f is smooth 

of x if and only if the following conditions hold: 

(a) At x, X is smooth over S. 

(b) At x, the sequence O----> f,~l ~/ I Y/S )~ S ---~ ~X/Y >0 is exact. 

I (f). (c) At x, nX/Y is free of rank n = dim x 
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proof. The necessity follows from (1.7) and (5.1). Conversely, 

,.. such that dgl,x,...,dgn,x form a basis take gl,x "'gn,x ~ Ox 

of (~/Y)x" Since the conditions are local, we may assume that the 

gi,x extend to global sections gi of X. The gi define a 

morphism g such that the following diagram commutes. 

X 
1% g >Ay 

Y 

P 

It remains to show that g is ~tale. Consider the exact sequence 

,El El ~i ) 01 applying g*, we obtain the 
O. > P Y/S ~ ~/S > n Ay/Y 

diagram 

. .~I g.~l 
O ~ g P Y/S > n > g,,%l,n ---i> O 

,~ y/s 

i I 
0 . > f.~l Y/S ~ '~x/s > ~x/Y > o 

By construction, ~ is an isomorphism~ hence, by the five len~ma, a 

is an isomorphism and g is ~tale by (5.2). 

Definition {5.4). - Let f .- X ~Y be a morphism of schemes. 

The tan@ent space of X/Y at x ~ X, denoted Tx/y(X) , is defined 

as the k (x) -vector space HOmk(x) (~ /y(X),k(x)) , (where ~X/y(X) = 

 /Y®Ox k Ix l. 

Corollary {5.5). - Let S be a locally noetherian scheme, 

X,Y schemes locally of finite type over S and f : X )Y an 

S-morphism. Let x be a point of X and 

y = f(x). Suppose X (resp. Y) is smooth over S at x (resp. y). 
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Then f 

TX/S(X) 

is rational over k(y), f is smooth at x 

df(x) : TX/s(X) >Ty/s(y) is surjective. 

Proof. By (VI,I.6) , the sequence 

f,Ql/s____ ~ I 1 
~X/S > nX/Y 

is exact. Assume T (f) 
x 

. 1 
f flY/S are free at x. 

lemma that the sequence 

0 

is smooth at x if and only if Tx(f) : 

)Ty/s(Y)~k(y)k(x) is surjective. In particular, if x 

if and only if 

>O 

1 
is surjective. By (5.1) , nX/S and 

So it follows from (IV,3.2) and Nakayama's 

1 1 , 1 
• H°mo X ( nX/Y' OX) ---> H°mo x ( nX/S' OX) --~ 'Homo x ( f flY/S' Ox) ---90 

is exact at x. It follows that, at x, the sequence splits and 

HOmox(~l/y,O X) is freel hence, we have the commutative diagram 

with exact rows 

f,~Iv/s- ~ ~ I nx/s ~ nx/Y ~ o 

y / s )  ~ ~ - 1 - v v  i _1  , v v  
0 - (f*Q ~ (nX,S)/ .~ ,Uy,x~/ ~ 0 

where F v = HOmox(F,O x) for any locally free Ox-MOdule of finite 

rank. 

Then, at x, a and ~ are isomorphisms, so y is an iso- 

i 
~x/s f %/s~ I morphism by the five lemma! hence, flX/Y is free and , I 

is injective. Hence, by (5.3), f is smooth at x. The converse is 

similar. 

Lemma (5.6). - Let S be a locally noetherian scheme, X an 

S-scheme locally of finite type, x a point of X and gl,...,g n 

global sections of O x. Suppose X is smooth over S at x. Then 



- i5i - 

the following conditions are equivalent: 

(i) gl,...,g n define an S-morphism g: X ,,~ ~,~ which is 4tale at x. 

i 
(ii) dgl,...,dg n form a basis of ~X/S at x. 

(iii) dg1(x) ..... dgn(X) form a basis of n~/s(X). 

Proof. Nohe that the map g,~1 ; i ~/S nX/S is an isomorphism at 

x if and only if (ii) (or, equivalently, (iii)) holds and apply (5.2). 

Theor@mo(5.7). - Let S be a locally noetherian scheme, X an 

S-scheme locally of finite type, Y a closed S-subscheme, and J its 

sheaf of ideals. Let x be a point of Y and gl,...,gn global 

sections of O X. Suppose X is smooth over S at x. Then the 

following conditions are equivalent: 

(i) There exists an open neighborhood X 1 of x such that 

gl,...,g n define an 6tale morphism g : Xl----->~ ~ and 

gl,...,g p generate J on XI! i.e., Y1 = Y N X 1 is the fiber 

over a linear subscheme ,/~-P of ,~ .  
(ii) (a) Y is smooth over S at x. 

(b) gl,x' " " " 'gp,x ~ Jx" 

(c) dgl(x), .... dgn(X) form a basis of nXl/s(X). 

(d) dgp+l(X) ..... dgn(X) form a basis of n~/s(X) • 

(iii) gl,x' .... gp,x generate Jx and dgl(x ) ,...,dgn(X) form a basis 

I 
of ~x/s (x) 

(iv) Y is smooth over S at x, gl,x,...,gp,x form a minimal set 

of generators of Jx and dgp+l(X ) ,...,dgn(X ) form a basis of 

~I (x). 
Y/s 

Furthermore, if these conditions hold, then, at x, the 

sequence 

(5.7.1) o ___~j/~2, 
> nxl/S®0xOY 

1 ~ s -  ~o 
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is exact and composed of free 0y-MOdules with bases induced by 

{gl ..... gp] , {dg I ..... dg n } and {dgp+ 1 ..... dgn] 

Proof. Assume (i). Since g is 6tale, YI is 6tale over 

/~-P by (VI,4.7). Thus Y is smooth over S at x with relative 

I 
dimension n-p. By (5.6), dgl, .... dg n form a basis ~X/S at x 

I 
and dgp+ 1 ..... dg n form a basis of ny/S at x~ so, (ii) and (iii) 

hold. It follows that gl,...,g p are linearly independent elements 

of j/j2 at x! since they generate, they are a basis. Therefore, 

(iv) holds and (5.7.1) is an exact sequence of free Oy-MOdules at x. 

Assume (ii) and let X 1 be an open neighborhood of x on 

which gl,...,g p generate J. Consider the commutative diagram 

i y~ ~yl c 

r~-p 
A s - 

g 

~n 
; i~ S 

g-l(~-p).- By (5.6), g and h are ~tale and, by where y, 

(VI,3.5), h' is unramified. Hence, by (VI,4.7), i is ~tale. 

However, by (VI,5.6),the closed immersion i is open. Therefore 

Y = Y' and (i) holds. 

Assume (iii) and let X I be an open neighborhood of x on 

which gl,...,g p generate J and dgl,...,dg n form a basis of 

I 
nX/S. Then (i) holds by (5.6). 

Finally, the implication (iv)~ (i) follows from (5.3) and the 

implication (i) }(ii) of the following theorem. 

Theorem (5.8). - Let S be a locally noetherian scheme, X 

an S-scheme locally of finite type, Y a closed subscheme of X, J 
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its sheaf of ideals, x a point of Y and n = dimx(X/S). Suppose 

X is smooth over S at x. Then the following assertions are 

equivalent: 

(i) Y is smooth over S at x and dimx(Y/S) = n-p. 

(ii) There exists an open neighborhood X 1 of x and an ~tale 

morphism g : XI---~ ~ such that XIN Y = g 

.. such that (iii) There exist generators gl,x' "'gp,x £ Jx 

1 
... (x) are linearly independent in nX/s(X)" dgl(x) , ,dgp 

j/j2 1 xOY____>~/S (iv) At x, O--~ ) ~X/S®O >O is an exact sequence 

of free Oy-MOdules of ranks p,n, and n-p. 

Proof. To prove the implication (i)~(ii), note that, by (5.1), 

X/S and ~Y/S are free at x with ranks n and n-p. Take 

gp+l,x"'''gn,x ~ OX such that dgp+l(X) .... ,dgn(X) form a basis of 

1 
~y/s(X). By (VI,l.8), the sequence 

1 I 
j/j2 > ~x/S®Ox°Y ---~ ~Y/s >o 

is exact, so extend dgp+l(X), .... dgn(X) to a basis dgl(x) ,...,dgn(X) 

1 . Then it follows from (ii)~(i) of nX/s(X) with gl,x ..... gp,x ~ Jx 

of (5.7) that (ii) holds. 

The implications(ii)~(i), (iii), (iv) follow directly from 

(5.7) ! the implications(iii) --->(i) , (iv) follow from (5.7) if we 

I 
extend dgl(x) ..... dgp(X) to a basis of nX/s(X). 

Assume (iv) and take gl,x'''''gp,x ~ Jx whose residue classes 

are linearly independent in Jx/J~. By Nakayama's lemma, the gi,x 

generate Jx' and the exactness of (5.7.1) implies that 

dgl(x),...,dgp(X) are linearly independent. Hence, (iii) holds. 

Corollary (5.9). - Let S be a locally noetherian scheme, X 

an S-scheme locally of finite type, Y a closed subscheme of X, J 



- 154 - 

its sheaf of ideals, x a point of Y, n = dimx(X/S) , gl,...,g p 

sections of J over a neighborhood of x. Suppose X and Y are 

smooth at x. Then the following conditions are equivalentz 

(i) p = dimx(X/S)-dimx(Y/S) and dgl(x) ..... dgp(X) are linearly 

1 
independent in ~X/s(X). 

(ii) gl,x'''''gp,x generate Jx and dgl(x) ,..o,dgp(X) are linearly 

1 
independent in nX/S (x) . 

. induce a basis of Jx/J~. (iii) gl .... gp 

(iv) gl,x .... 'gp,x form a minimal set of generators of Jx" 

(v) There exist sections gp+l,...,g n of 0 x over some open 

neighborhood X 1 of x which, together with gl,...,gp, 

define an ~tale morphism g = Xl.____> ~ ns such that 

YNXl = g-l(~-p) . 

Proof. Assertions (iii) , and (iv) are equivalent by Nakayama's 

lemma! (i) , (ii) , (iii) and (v) , by (5.7) . 

Corolla;y (5.10). - Let S be a locally noetherian scheme, 

X an S-scheme locally of finite type and Y a hypersurface defined 

by a global section g of 0 X. Assume X is smooth over S at 

x ~ Y. Then Y is smooth over S at x if and only if dg(x) ~ O. 

Proof. The necessity follows from (iv)~(ii) of (5.9)! the 

sufficiency, from (iii)---~(i) of (5.8). 

Corollary (5.11). - Let S be a locally noetherian scheme 

and Y an S-scheme locally of finite type over S. Consider a 

cartesian diagram 

y, ~y 

ILII 
S' ~S 

in which S t, ~S is flat. Let x' be a point of Y' and x ¢ Y, 
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s' ~ S', s ~ S its images. Then Y is smooth over S at x if 

and only if Y' is smooth over S' at x'. In particular, if 

S' ......... )S is faithfully flat, then Y is smooth over S if and only 

if Y' is smooth over S'. 

proof, we may assume that S and Y are affine and that 

Y )S is of finite type. Then there exists a closed immersion 

Y' ~X = ~n S~ let Y" >X' = ~n S' be its base extension and let J 

and J' be the defining sheaves of ideals. Consider the sequences 

I I . 
( 5.9. I) 0 ~ j/j2- > ~X/S@OxOY ) ~Y/S ............. z 0 

1 71 
(5.9.2) 0 )j,/j, 2 > nX,/S ,eOx, Oy, ay,/s , )O 

Since, by (V,l.6), 0 s >On, is faithfully flat, by (VI,4.10) and 

(VI,I.18), (5.9.1) is exact if and only if (5.9.2) is exact. Thus, 

the assertion follows from (iv)(>(i) of (5.8) and the following 

lemma. 

~mma (5.12). - Let ~ : A )B be a local homomorphism of 

noetherian rings and M a finite A-module. Suppose B is flat over 

A. Then M is free over A if (and only if) M~gAB is free over B. 

Proof. The assertion follows immediately from (V,l.5,(iv)) 

and (III,5.8). 

Theorem (5.13). - Let S be a locally noetherian scheme, X 

a scheme locally of finite type over S and Y a closed S-subscheme 

of X. Suppose Y is smooth over S at x. Then X is smooth 

over S at x if and only if Y is regularly immersed in X at x. 

Proof. If X is smooth over S at x, then, by (5.8), there 

exists an open neighborhood X I of x in X and an ~tale morphism 

g : Xl---+~ ~ such that YI= YNXI= g-l(~-P). Since ~-P is 
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n 
regularly immersed in /%S and since g is flat, it follows that Y 

is regularly immersed in X at x. 

Conversely, if Y is regularly immersed in X at x, let 

(gl,x' .... gp,x ) be an Ox-regular sequence which generates the ideal 

Jx of Y at x and let gp+l,x,.o.,gn,x be elements of OX, x 

whose images in Oy, x define an ~tale morphism Y )~-P. Since 

the question is local, we may assume the gi,x extend to global 

sections of X. Then they define a map g:X ~ = X',and, in view of 

(VI,4.6), it remains to show that g is 6tale at x. The fiber of 

g at x is identical to the fiber of glY at x! thus, g is un- 

ramified at x. Applying (4.6) to A = OX, g(x), M = B = OX, x and 

I = Jx' we conclude that g is flat at x. 

Theorem (5.14) (Jacobi@n criterion). - Let S be an noetherian 

n and x affine scheme with ring A, Y a closed subscheme of X =A S 

a point of Y. Let I = glR + ... + g~ be the ideal in A[TI,,..,Tn]=R 

~(g~ ..... gN ) 
defining Y and ~(T1 ' ,Tn) (x) the matrix whose (i,j)th entry is 

~gi, , 
~T ~x) , (called the Jacobian matrix). The following conditions are 

3 
equivalent: 

(i) Y is smooth over S at x and dim (Y/S) = n-p. 
x 

(ii) There exists a re-indexing of gl' .... gN such that gl,x,...,gp, x 

I~(gl gp) I ..... generate I x and rank '~(TI ' ,Tn) (x) -- p. 

(iii) Y is flat over S at x, dimx(Y/S) = n-p and 

rank L~ (TI .... ~ (X) = p 

Furthermore, if Y is smooth at x and dim x(Y/s) = n-p. 

then gl,x,...,gp,x ~ I x generate if and only if 

r a n k  [_~ (T 1 '  . ,Tn)  (x)  = p .  
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Proof. Assume (i) and, by (5.8) , re-index the gl,...,g N so 

that gl,...,g P yields a base of Ix/I ~. By (5.9), gl,x .... 'gp,x 

generate I x and dgl(x), .... dgp(X) are linearly independent. 

Assertion (ii) now results from the following lemma. 

n and A be a ring, x a point of ~A 

are linearly 

Lemma ,,,(5.15). - Let 
gl ..... gp~ A[T I .... ,Tn]. Then dgl(x) , .... dgn(X) 

independent if and only if rankl ~(T1, ( = p. 

Proof. Since dgi(x) =~ 0gi x "- ~-~. ( )aTj (x) and the aT (x) are 
] ] 

linearly independent, the assertion follows from the definition rank. 

Assume (ii) of (5.14). Then (5.15) implies that 

dg1(x) ,...,dgp(X) are linearly independent! so, by (5.8), it 

follows that (i) holds. 

Trivially, (iii) follows from (i) and (ii) together}it remains 

to prove that (ii) follows from (iii). By re-indexing gl,.o.,gN, 

]-O(gl, .... gP) )i we (x = p. Let yt be the subscheme may assume rank L0 (T I' ,Tp) 

defined by the ideal gIR + ... + gpR By (ii)-__$(i), Y' is smooth 

at x. Since Y is flat over S, by (1.9), we may assume 

S = Spec(k(s)) where s is the image of x in S. Then Y' is 

reduced by (4.9) and by (5.8) dimx(Y'/S) = n-p. Since Y is a 

closed subscheme of Y' and dimx(Y/S) = n-p, it follows that Y = Y' 

near x, proving (ii) and necessity in the last assertion. Conversely, 

in the last assertion, if gl'''''gp generate, then we may take 

r-o(%. . . . . .  g_) ] 
I . -  _~, (x)l = p by (i)~(ii). N = p! thus, rank U(TI ' 

. ,'A'n/ J 
Proposition (5.16). - Let S be a locally noetherian scheme, 

X,Y two S-schemes locally of finite type, g : X )Y an S-morphism, 
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x a point of X and y = g(x). Assume either of the following two 

conditions: 

(a) dim (X/S) = dim (Y/S) , X is flat over S at x and Y is 
x y 

smooth over S at x. 

(b) Y is regular at y and dim(Ox) = dim(Oy). 

Then the following conditions are equivalent: 

(i) g is ~tale at x. 

I I 
(ii) g*ny/s-----hQX/S is an isomorphism at x. 

I 1 
(iii) g*~y/~-gny/S is surjective at x. 

Proof. The implication (i)~(ii) was proved in (VI,4.9) and 

(ii)~(iii) is trivial. Assume (iii). By (VI,l.6) and (VI,3.3), 

it follows that g is unramified and it remains to prove that g is 

flat. Under assumption (a) , X and Y are flat over S at x! so, 

by (VI,4.8), we may assume S = Spec(k (s)) where s is the image 

of x in S. Then, by (4.9), O is regular. Since by (V,5.5), g 
Y 

is flat on an open set and since by (III,2.8) , the closed points of 

X are dense, we may assume x (and, therefore y) is closed. There- 

fore, dim(O x) = dimx(X/S) and dim(Oy) = dimy(Y/S) ! so, it suffices 

to prove that g is flat at x under assumption (b). 

By (VI,6.12), 0 is a quotient of a local, ~tale extension B 
x 

of Oy. Since Oy is regular of dimension n = dim(Oy) , it follows 

from (V,2.11) and (4.9) that B is regular of dimension n. There- 

fore, since dim(B) = dim(Ox), it follows that B = 0 x. 

6. Algebraic schemes 

Proposition (6.1). - Let k be a field, X an algebraic 

k-scheme, x a closed point of X, n = dimx(X/k) and gl .... 'gn 

global sections of 0 X. Then the following conditions are equivalent: 
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n which is ~tale at x. (i) gl ..... gn define a morphism g : X )~k 

I 
(ii) dgl, .... dg n form a basis of ~X/k at x. 

1 
(iii) dgl, .... dg n generate nX/k at x. 

If, in addition, k(x) is a separable extension of k and 

gl,x'''''gn,x~ m x, then (i) , (ii) , and (iii) are equivalent to: 

,.. generate m . (iv) gl,x ''gn,x x 

Proof. The equivalence of (i), (ii) , and (iii) results from 

i 
(5.16). Under the additional hypotheses, by (VI,3.4), nk(x)/k = O; 

2 1 
so, the sequence m /m -----~n_ ~k(x) 20 is exact by (VI,I.8)! 

x x Ux/~K 

thus (iii) follows from (iv). 

Conversely, assume (i), (ii) and the additional hypotheses. 

Then, by definition, Spec(k(x)) and X are smooth over k at x! 

2 x ~Olx/k so by (5.8) , the sequence 0 >mx/m ~ ~kk(X) -----90 is 

exact~ whence, (iv). 

Corollarv (6.2). - Let X be an algebraic k-scheme and x a 

closed point of X. Suppose X is smooth over k at x. Then 0 x 

is regular. Conversely, if k(x) is a separable extension of k 

and O is regular, then X is smooth over k at x. x 

Proo__~f. The first assertion follows from (4.9). Conversely, 

. ~ m (6.1) applied to a regular system of parameters gl,x' "''gn,x x9 

implies the assertion. 

Proposition (6~3). - Let X be an algebraic k-scheme. If 

X is smooth over k, then X is regular. Conversely, if X is 

regular and k is perfect, then X is smooth over k. 

Proo____~f. The first assertion follows from (4.9). Conversely, 

if k is perfect and X is regular, the open set U on which X 
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is smooth contains all closed points by (6.2); hence, by (III,2.8), 

U=X. 

Theorem (6.4). - Let k be a field, X an algebraic k-scheme, 

x a closed point of X and n = dimx(X/k). Then the following 

conditions are equivalent: 

(i) X is smooth over k at x. 

(ii) 1 ~X/k is free of rank n at x. 

(iii) 1 ~X/k is generated by n elements at x. 

(iv) There exists an open neighborhood U of x such that U~L 

is regular for all field extensions L of k. 

(iv') There exists an open neighborhood U of x and a perfect 

extension k' of k such that U~k' is regular. 

Proof. The implication (i) ~(ii) follows from (5.1) ! 

(iii)~(i) , from (6.1). If X is smooth over k at x, then there 

exists an open neighborhood U of x on which X is smooth over 

k! by (1.7) , U~L is smooth over L and by (4.9), U~L is regular. 

Thus, (i)~ (iv). Finally, the implication (iv')---~(i) follows 

from (6.3) and (5.11). 

Proposition (6.5). - Let k be a field, K an artinian 

local ring which is a localization of a k-algebra of finite type, m 

the maximal ideal of K, and n = tr.degkK/m. Then the following 

conditions are equivalent: 

(i) K is a finite separable field extension of a purely trans- 

cendental extension of k. 

(ii) 1 ~K/k is a free K-module of rank n. 

(iii) 1 ~K/k is a K-module with n generators. 

(iv) For all field extensions L of k, K~L is reduced. 
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(iv') There exists a perfect extension k' of k such that K~k' 

is reduced. 

Furthermore, K is a finite separable field extension of k(tl,...,t n) 

I 
if and o n l y  i f  d t l ' ' ' ' ' d t n  form a b a s i s  o f  ~K/k" 

proof. Consider K as the local ring of a generic point x 

of an algebraic k-scheme X. Then, by (6.4), (ii) and (iii) are 

equivalent and (iii) implies (i) and (iv). 

Assume K = k(tl,...,tn,...,tr) is a finite separable 

extension of k(t I ..... t n) and let X = Spec(k[tl,...,tn,... ,tr]) . 

Then tl,...,t n define a morphism X ~ which is ~tale at x 

(where O = K)~ so, by (VI,4.6) and (6.1), (i) implies (ii) and 
x 

necessity in the last assertion. It remains to prove that (iv') 

implies (ii) and sufficency in the last assertion. 

Assume (iv'). Then, since every element of m is nilpotent 

by (II,4.7) and since K~k' is reduced, K is a field. Let 

tl,...,t r be elements of K such that dtl,...,dt r form a basis 

1 ~ ~ 1 
of ~K/k' and let L = k(tl,... ,tr) . Then n ~L K ~nK/k~ 

1 
so, by (VI,I.6), ~K/L = O. Therefore, by (VI,3.3), K is a finite 

separable extension of L and thus r 9 n. 

Let f ~ k[T 1 ..... T r] be a nonzero polynomial of minimal 

degree such that f(t I ,t r) = 0. Then~--~- (t)dt i = O! so, the 
'''" ~T 

1 

dt i being linearly independent, 0-~--f(t) = 0 for I ~ i ~ r~ hence, 
~T. 

1 
~f 

deg(f) being minimal - 0 for 1 ~ i ~ r. If k has 
' ~T. 

1 

characteristic O, it follows that f = 0! hence, tl,...,t r are 

a l g e b r a i c a l l y  i n d e p e n d e n t  and r ~ n.  
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If k has characteristic p > O, then f = h(T p, . T p . ., r ) . If 

Pi I Pi r 
f(T) = Zc(i)T I ... T r , let d(i) = ~i) and 

il ire k'~kK; then gP = O! so, since k'~kK is g = Xd(i)~t i ... t r 

reduced, g = 0. If d(i ) = Xe(i ) ,jfj where the fj are linearly 

il i 
,jtl r = 0 for any j, independent over k, then Ze(i ) ... t r 

contradicting the minimality of deg(f). Hence, t I ..... t r are 

algebraically independent and r ~< n, completing the proof. 

~grollary (6.6). - Let K be a finitely generated field 

extension of k and n = tr.degkK. Then dimK(£~/k) ~ n, with 

equality if and only if K/k is separably generated. 

1 1 is a K-module with Proof. If dimK(~K/k) = r ~ n, then nK/k 

n generators and, by (6.5) is free of rank n. Thus r = n. 

Corollary (6~7). - An algebraic k-scheme X is smooth if 

1 
and only if £X/k is locally free and the local rings of the generic 

points are separable field extensions of k. 

Proof. The assertion results from (6.4), (6.5), and (III,2.8). 



Chapter VIII - Curves 

1. The Riemann-Roch theorem 

Definition (I~![. - Let k be an artinian ring, X a proper 

k-scheme and F a coherent sheaf on X. The Euler-Poincar~ 

~haracteristi 9 of F, denoted X(F), is defined as the alternating 

sum Z(-l)ihi(F) of the length hi(F) of the k-modules Hi(X,F). 

If D is a divisor on X, then we often write %(D) (resp. hi(D)) 

in place of X(O X(D)) (resp. h I(0 x(D))) . 

Proposition (1.2). - Let k be an artinian ring, X a proper 

curve over k and DI,...,D r divisors on X. Then the Euler- 

Poincar~ characteristic X(nlD I + ... + nrDr) is a linear poly- 

nomial in nl,...,n r with integer coefficients. 

Proof. If r = O, the assertion is trivial. If r ~ I, let 

J = Ox(-DI)NO X, J' = J(DI), F = OX/J and G = (Ox/J')(-DI). Since 

the sequences 

O--~J(nlDl+...+nrDr)--->Ox(nlDl+...+nrDr)-->F(nlDl+...+nrDr)-->O 

O-gJ'((nl-l)Dl+...+nrDr)---)Ox((nl-1)Dl+...+nrDr)--gG(nIDl+...+nrDr)->O 

are exact, and since dim(Supp(F)) = dim(Supp(G)) = O, 

~(nlDl + ... + nrDr)-X((nl-l)Dl+ ... + nrD r) 

is a constant. Therefore, the assertion follows by induction. 

Definition (1.3). - Let k be an artinian ring, X a proper 

curve over k and D a divisor on X. Then the deqree of D is 

defined as the leading coefficient of the polynomial x(nD). 
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Theorem (1.4) (Riemann). - Let k be an artinian ring, X a 

proper curve over k and D a divisor on X. Then 

X(D) = deg(D) + %(Ox). 

Prop0sitipn (1.5). - Let k be an artinian ring, X a proper 

curve over k and C, D two divisors on X. Then, deg(C-D) = 

= deg(C)-deg(D). 

Proof. By taking successively n = 0 and m = 0 in the poly- 

nomial % (mC-nD) = am-bn+c, it follows that a = deg (C) and 

b = deg(D)! by taking m = n, it follows that a-b = deg(C-D). 

proposition (1.6). - Let k be an artinian ring, X a proper 

normal curve over k and D a divisor on X. Then, deg(D) = 

= ZVx(D)degk(x) where Vx(D) is the integer defined in (VII,3.9) 

and degk(x) is the k-length of k(x). 

Proof. By (VII,2.6), (VII,3.10,(iii)) and (1.5), we may 

assume cyc(D) = x. Since the sequence 

0 )O X ----->Ox(D) .... ¢ k(x) >0 

is exact, X(D)-%(O X) = degk(x); hence, by (1.4) , deg(D) = degk(x). 

Remar K (1.7)° - Let X be a curve, F a subsheaf of K x 

s u c h  t h a t  F x o  KXo f o r  a l l  g e n e r i c  p o i n t s  x 0 o f  X a n d  G t h e  

quotient ~/F. Then there exists an injection G ~nclosed G' x 

where G' is the Ox-MOdule whose stalks are G at x and 0 
x x 

elsewhere. S i n c e  t h e r e  i s  an  i n j e c t i o n  ~ G ' - - - - - ~ g G '  a n d  s i n c e  ~ G '  
x x x 

and G have the same stalks, there exists a canonical isomorphism 

X 

Proposition (1.8). - Let X be an S 1 noetherian curve, 

K = F(X,Kx) and F a subsheaf of ~ such that FXo Kxo for all 
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generic points x O of X. Then there exists an exact sequence 

O ~HO(x,F) >K -->e (Kx/F x) > HI(x,F) ) O. 

.Proof. The assertion results from the exact sequence 

O )F ---> K x" ) Kx/F >O because HO(X,Kx/F) = • Kx/F x by (1.7) 

and HI(X,K x) = O by (VII,3.8). 

Remark (1..9). - Let k be an artinian ring, X an S I curve 

of finite type over k, K = F(X,Kx) and F a coherent subsheaf of 

KX° It follows from (1.8) applied to F that HI(x,F) * may be 

identified with the set J(F) of families 6 of maps 6x, one for 

each closed point x of X, which satisfy the following four condi- 

t ions : 

(a) 6 : K >k is a k-linear map. 
x 

(b) 6 ( K  ° x ) = O for all generic points x 0 such that x O / ~x 

or such that x O • Supp(F). 

(c) 6x(Fx) = O. 

(d) 76 (f) = O for each f ~ K. 
X X 

A family 6 ~ J(F) , for some F, is called a pseudo-differential. 

The set J of all pseudo-differentials has a natural K-module 

structure: If 6 ~ J and f ~ K, then (f6)x(g) = 6x(fg) for g ~ K. 

It is easily seen that, if 6 ~ J(F), then f6 ~ J(G) where 

G x {g ~ Oxl fg £ F }. 
X 

If F C F' C K X and Supp(F) = Supp(F'), then, clearly, 

J(F') ¢ J(F). If F' = F + ann(F), then J(F) c J(F') and 

Supp(F') = X. If Supp(F) = X, then, for each x e X, F contains a 
X 

non-zero-divisor f of K! moreover, since F = O for almost 
X X X 

all x, almost all f may be taken as I. Then, the f-I define 
x x 

a divisor D such that Ox(D) ¢ F. Therefore, J = UJ(D) where 

J(D) = J(Ox(D)) and D runs through Div(X) . 
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P~opos!tiQn (1.10). - Let k be an artinian ring, X an S 1 

curve proper over k, K = F(X,~) and J the K-module of pseudo- 

differentials. Then, rankK(J) ~ 1. 

Proof__Suppose 61,...,6r~ J are linearly independent over K. 

Let D be a divisor such that 61,...,6r~ J(D). Then, for any 

divisor C, J(D-C) ) HO(c)61 + "'" + HO(C) 6r" Hence, hi(D-C) 9 rhO(c). 

Replacing C by D-C yields hi(C) ~ rhO(D-C). Thus, by Riemann's 

theorem (1.4), 

-[deg(D-C) + %(O X) ] + hO(D-C) ~ r[deg(C) + x(O x) + hl(c) ] 

and so 

(1.10.1) -deg(D) ~> (r-i)deg(C) + (r+l)x(O X) + (r2-1)hO(D-C). 

Now, if we let deg(C)--~ ~ , we see that r ~< i. 

Pr0position (I.ii). - Let k be a field, X a connected 

normal curve proper over k and 6 a nonzero pseudo-differential. 

Then there exists a unique maximal divisor D such that 6 ~ J(D). 

This divisor is denoted (6) and is called a canonical divisor. 

Moreover, Vx((6)) is the largest integer n such that 

6x(t[nOx)x = O where tx is a uniformizing parameter at x. 

Proof. With r = i, (i. IO.I) yields that, if there exists a 

6 ~ J(D), then deg(D) ~ -2X(Ox). However, it is easily seen that if 

6 ~ J(D) and 6 ~ J(D') , then 6 ~ J(Max(D,D')) ~ whence, the 

assertion. 

~ .  - Let k be an artinian ring and X an S I 

curve of finite type over k. For each open set U of X, let Jx(U) 

(resp. ~x(U)) be the set of pseudo-differentials 6 on the scheme- 

theoretic closure of U (resp. such that 6x(Ox) = 0 for all closed 

points x ~ U). It is easily seen that the Jx(U) (resp. ~x(U)) form 
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a sheaf, called the s h@af of rational pseudo-differentials (resp. 

sheaf of reqular pseudo-differentials or canonical sheaf). 

ProDosition....(i.13). - Let 

algebraic curve over k and 6 

the map K ~ J defined by fl 

Ox((6)) ~;w x- 

Proof. For any closed point 

k be a field, X a connected normal 

a nonzero pseudo-differential. Then 

)f6 induces an isomorphism 

x ~ X, the following conditions 

are clearly equivalent: f6 g w x,- (f6)x(Ox) = 0-, 6x(f0x)= O! and 

f ~ (Ox(6)) x. Surjectivity results from (1.10). 

Remark ~I.14). - Let k be a field and X a reduced algebraic 

curve over k. It follows from (I.IO) applied componentwise that we 

may identify J with K and J with K. So, by (1.8) , there 
x x 

exists an exact sequence 

o , r (x ,~x ) ~ J ~ • Jx/~x ) H i (X ,w x) ~ 0. 

Now, for each closed point x ~ X and each 6 ~ J, let ReSx(6) = 6x(1). 

Then ReSx: J ~k is k linear and ZResx(6) = ZSx(1) = 09 further- 

more, if 6 ~ ~ , then Res (6) = 6 (I) = O. Hence, 
x x x x 

H i Res = (Res x) : (X,~x) )kl Res is called the residue mad of x. 

Theorem (I.15) (Roch). - Let k be a field, X a reduced 

curve proper over k and F a coherent subsheaf of ~. 

map 

: HO(x,Hom(F,Wx)) ,HI(X,F) *, 

Then the 

induced by Res, is an isomorphism. 

Proof. Given 6 e HI(X,F) * = J(F) , define ~(6) : F---gw X by 

@(6)x(f ) = f6 for all x £ X and f ~ FxC K c K. Then, for any 
x 

closed point y ~ X, ReSy(@(6)y(f)) = (f6)y(1) = 6y(f) ! so, Y o ~ = 
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= id I . Finally, if u : F )w x then, for f ~ F , 
H (X,F) * ' x 

= = u(f)x~ so ~ o • = idHom(F,~x ) (@(~(u))x(f) ) x (f~(u)) x , . 

Proposition (I.16) (Rosenlicht). - Let k be a field and X 

a reduced algebraic curve over k. Let Y be the normalization of 

X and p : Y- ~X the canonical morphism. Then: 

(i) The Ox-homomorphism 4: P*~Y----~X' defined by ~(~)x p(y)=x y 

is an injection. 

(ii) The natural pairing (p,O~Ox)×(Wx/p,~ Y) )k is nonsingular. 

(iii) ~x is coherent. 

(iv) Let C = Ann (p,Oy/O X) , nx= dis k (p,O/C) x and dx= diSk (P*O~Ox) x" 

+ i ~ n x ~ 2d and Then, for all singular points x of X, d x x 

the equality n = 2d holds if and only if ~X is free of 
x x 

rank I at x. 

Proof. Let x be a closed point of X, A = (p,Oy)x, q the 

. radical of A, {yi,...,yn } = p-1(x) and A i = Oy i For any integer 

r>O,A/q r = KAi/qrA i by (II,4.9) ! hence, given g ~ Ai, there exists 

h £ A such that h ~ g mod qrA. and h ~ O mod qrA for j / i. 
l ] 

If 6 is a pseudo-differential on Y, there is an r such that 

6 (qrA i) = O for all i. Therefore, if I is an ideal of A 
Yi 

r 
which contains q for some r, then ~(6)x(I) = O implies 

6y1(IA i), = O for all i. 

Generically, @ is a map of one-dimensional vector spaces by 

(I.IO). It now follows that ~ is injective and that any pseudo- 

differential a on X is the form ~(6) for some pseudo-differential 

6 on Y. Moreover, if ~x(A) = O, then 6yi(A i) = O for all i~ 

so, ax~ (P*~Y) x" Therefore, if B is any k-subspace of A and ~(B) 

is the set of pseudo-differentials a on X such that a (B) = O, 
x 



- i69 - 

then 
(p, Wy) x = w (A) 

and the natural pairing gives rise to the injection 

w(B)/w(A) )(A/B) * 

Since W(Ox) = w x and C xc Ox, it follows that to prove (ii) it 

suffices to prove that dimk(W(Cx)/W(A)) = dimk(A/Cx). However, 

a = ~(6) ~ W(Cx) if and only if 6yi(CxAi) = O for all i. Since 

by (VII,2.6),CxA i is principal and rank K (Jyi) = I, 
Yi 

dim({6 ~ Jyil6yi(CxAi) = O}/Wy i) = dim(Ai/CxAi)! whence (ii). 

Assertion (iii) results immediately from (i) and (ii). 

To prove (iv), note that, if x is singular, then k + Cx¢ OxCA~ 

whence, d + 1 ~< n . For each i, let 6. ~ w generate A.w . 
x x l x i x 

Making a purely transcendental extension of the ground field, if 

necessary, we may assume it is infinite; then, a suitable combination 

6 of the 6 i generates all A.w and A6 = A~ . Let f ~ A and 
i x x 

suppose f6 E w(A) . Then (A6) (f) = O, so f ~ O x by (ii). However, 

C = ann(Wx/W(A)) by (ii). Therefore, f ~ C . 
x x 

The map f~--~f6 defines an injection u : Ox/Cx---->Wx/W(A) 

hence, n x -  dx~< d x .  I f  Wx i s  a f r e e  Ox-module  o f  r a n k  1,  t h e n  

necessarily 6 is a basis~ so u is surjective and n x d x x 

Conversely, if this equality holds, then u is surjective and every 

a ~ w is of the form g6 + ~ where g ~ O and ~ ~ w(A). However, 
x x 

= f6 for some f ~ A! so, f ~ 0 and a = (g + f) 6. 
x 

Remark (!.17) - (i) Under the conditions of (1.16), suppose 

hl(Ox ) h i X is integral and proper and let ~ = (resp. g = (Oy)) be 

the arithmetic (resp. geometric) genus of X. Then the exact sequence 

0 ~0 x )p, Oy .......... ~ p,0y/Ox---~O shows that 

= g + Zd . 
x 
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(ii) Let X be a reduced algebraic curve lying on a smooth 

algebraic scheme P of pure dimension r. Then it follows from (1.16), 

(1.15) and (I,2.112.3~ and 4.6) that the sheaf w X of regular 

pseudo-differentials is of the form Ext~ 1 r (Ox,~P/k). Moreover, by 
r 

(I,2.6),(III,4.5 and 4.12) , and (VII,6.2) w X is locally free of 

rank 1 at x ~ X (or, equivalently, nx= 2dx) if X is a complete 

intersection in P locally at x. 

In particular, w X is invertible if X is a complete inter- 

section in ~r (Rosenlicht) or if X lies on a smooth surface F 

(Gorenstein-Samuel) ! further, if K F is a canonical divisor on F 

(i.e. n 2 = OF(~)) then X. (X + K F) is a canonical divisor on 
' F/k 

x (1,2.4). 

2. Tate's definition of residues 

Remark (2.1). - Let k be a ring, A a k-algebra and M, N 

two A-modules. Then there is a natural left (resp. right) A-module 

structure on HOmk(M,N) : If u ~ HOmk(M,N) , a £ A and x c M, then 

(au) (x) = au(x) (resp. (ua) (x) = u(ax) ) . Let [A,HOmk(M,N) ] denote 

the k-submodule of Homk(M,N) generated by all elements of the 

form au-ua. 

O 

p;oposition (2.2). - Let k be a ring, A a k-algebra and 

)NJ-~E P )M---~O an exact sequence of A-modules. If M is 

i 
: ~A~ )H = Homk(M,N)/[A,HOmk(M,N)] 

.-I 
such that ~(dt) = 3 o(t~-ut) for any k-section G of p. 

• -I • is Proof. Define D : A )H by D (t) = 3 o(te-et), D 

well-defined because po(tu-ut) = t-t = O. If ~' is another 

k-projective, then there exists a canonical A-homomorphism 
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-I 
k-section, let T = ¢' - ~. Then p o T = O! SO,Q = j o V ~ Homk(M,N). 

Now, D ,(t)-D (t) = j-lo(t~'-~'t- ta+~t) = tQ-Qt ~ [A,HOmk(M,N)]. 

Thus D = D a is independent of ~. If t,t' ~ A, then D(tt') = 

= j-l(tt'G--tut'+tGt'--~tt') = tD(t')+t'D(t).Thus, D is a k-derivation! 

whence, the assertion. 

Definition (2.3). - Let k be a ring and A a k-algebra. 

Then define S A as the set of all s ~ A satisfying the following 

two conditions: 

(a) s is a non-zero-divisor. 

(b) A/sA is projective of finite rank over k. 

Lemma (2~4). - Let k be a ring and A a k-algebra. Then 

S A is a multiplicative set. 

Proof. Let r, s ~ S A. Then, clearly, rs is a non-zero- 

divisor. Furthermore, the sequence 

(2.4.~) 0 ---~A/sA r ) A/r sA ........ ~A/rA ~0 

is exactl hence, A/rsA is k-projective of finite rank. 

D@finition (2,5). - Let k be a ring, A a k-algebra, 

I 
w ~ ~A/k and s ~ S A. Then ReSA/k(~/s) is defined as 

tr(A/sA)/k(~(~))where ~ is defined as ~(2.2) with respect to 

O- )A/sA : S >A/s2A ~ ~A/sA ~0. 

(i) 

(ii) 

Remar~ (2.6). - Let k be a ring and A a k-algebra. Then 

I 
ReSA/k(~/1) = 0 for any ~ ~ hA/k. 

ReSA/k(adt/s) = tr(~/sa)/k(S-l(tu-Gt)a) where a,t ~ A,s ~ S A 

and ~ is a k-section of A/s2A ~A/sA. 

Lemma (2.7). - Let k be a ring, A a k-algebra and 

u : A-~A a k-linear map. Suppose u(rA)NrA = 0 and u(sA)NsA = 0 
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for r, s ~ S A. Then tr(A/rA)/k(Ur) = tr(A/sA)/k(Us) where 

ut= u~id (A/tA) " 

Proo_____ff. By symmetry, we may replace s by rs. Then, since 

(2.4.1) splits, the corresponding matrix M(u s) has the form 

O ; whence, the assertion. 

Definition (2.8). - Let k be a ring. A a k-algebra 

and u : A ~A a k-linear map such that u(sA)NsA = O for some 

s ~ S A. Then the trace of u, denoted trA/k(U) , is defined as the 

element tr(A/sA)/k(U s) ~ k where Us= u~idA/sA. 

Proposition (2.9). - Let k be a ring, A a k-algebra and 

: A ~sA a k-linear projection. Then for all a, t ~ A, 

= trA/k(S-1 (~t-tK) a) ReSA/k (adt/s) o 

Proof. If R = ker(~), then A = R ~ sR ~ s2A, R ~ A/sA and 

~A/s2A! R ~ sR whence o' = id A - ~ induces a k-section ~ of 

A/s2A :- >A/sA. Since Et-t~ = t~t-~'t, it follows that 

trA/k(s -l(Kt-tn) a) = tr(A/sA)/k (s-l(t~-~t)a) = ReSA/k(adt/s) . 

ProDosition (2.10). - Let k be a ring and A a k-algebra 

1 
and K = SAIA. Then ReSA/k is a k-linear map from ~K/k to k. 

Proof. Let a, t ~ A and r, s ~ S A. Let K be a k-linear 

projection A--->rsA. Then r-ITir is a k-linear projection A---gsA. 

Hence, by (2.9), ReSA/k(radt/rs) = trA/k(s-lr-l(~t-tn) ra) and 

ReSA/k(adt/s) = trA/k(s-l((r-1~r) t-t(r-l~r))a). Therefore, by 

(2.7), ReSA/k(radt/rs) = ReSA/k(adt/s) ! whence, the assertion. 

Proposition (2.11). - Let k be a ring and A a k-algebra. 

Then ReSA/k(ads/s) = tr(A/sA/k(a) for all a ~ A, s £ S A. In 

particular, "ReSA/k(dS/s) = rankk(A/sA).l k. 
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Proof. Let ~ : A ..... >sA be a k-linear projection and 

~' = idA-~. Then ~t-t~ = t~'-~tt, ~'os = O, trA/k(S-i(s~'-~ts)a) 

= trA/k(ala) and M(e'a) = (~ ~) I whence, the assertion. 

PrOposition (2.12). - Let k be a ring, A a k-algebra and 

s ~ S A. Then ReSA/k(dS/s n) = 0 for n > I. 

Proof. Decompose A into a k-direct sum A = T (9 sn-iR ~ s nA 

where T = R ~ sR ~ ... ~ sn-2R and let ~ be the projection 

n-I 
A )snA. If a = t + s r + snb is the decomposition of a ~ A, 

then u(a) = s-n(Ks-sK)a = s-n(snr+sn+Ib-sn+Ib) = r~ hence, 

M(u) = /@ s l-n 0 I ~nd trA/k(u) 
0 0 0 

O 0 O 
% 

= O. 

3. Functorial properties of residues 

Lemma (3.1). - Let k be a ring and ~ : A AA' a k-algebra 

I 
homomorphism. Let s E S A and w ~ ~A/k' let s' = @(s) and 

w' = ~(w). Assume: 

(a) s' is a non-zero-divisor in A' 

(b) ~ induces an isomorphism A/s2A ~)A'/s'2A ' . 

Then s' ~ SA, and ReSA,/k(W'/s') = ReSA/k(W/s). 

Proof. In the commutative diagram induced by ~, 

0 ; A/sA ~. > A/s2A > A/sA --> O 

the vertical maps are isomorphismsl whence, the assertion. 
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Proposition (3.2). - Let k be a ring, A a k-algebra, s ~ S A 

and Q a multiplicative set in A such that Spec(A/sA) ¢ Spec(Q-IA). 

I 
Then ReSA/k(W/s) = Res (w/s) for all w ~ hA/k. 

Q-IA/k 

Proof. Since localization is exact, s is a non-zero-divisor 

in Q-IA and Q-IA/s2Q-IA = Q-I(A/s2A) = A/s2A! whence, the 

assertion results from (3.1). 

ProDositiQn (3.3). - Let k be a ring and A a noetherian 

k-algebra. Let s ~ S A and m an ideal contained in sA. If 

~im(A/mr) , then ReS~/k(W/S ) = ReSA/k(W/S) for all w ~ A/k" 

Proof. By (II,l.17) , (3.1a) holds and by (II,l.19) , (3.1b) 

holds! whence, the assertion. 

Proposition (3.4). - Let k be a ring, {A i} a finite family 

of k-algebras and A = KA i. If s = Ks. where s ~ S A and s.~ A. 
1 1 1 

and if w = Xw.l where w.~l ~i/k' then si~ SA~ and 

ReSA/k(W/s) = ZReSA./k(Wi/Si)- 
1 

Proof. Since A/sA = KAi/siAi~it follows that s ~ S A (if and) 

o n l y  i f  s i~  SA, f o r  e ach  i .  Choose s p l i t t i n g s  ~ i  o f  
1 

Ai/(si)2Ai----->Ai/siAi~ then e = ~. is a splitting of A/s2A--gA/sA. 

By linearity of Res, we may assume w = adt. Let a = Ka, and 
1 

t = nt i where a i, t i ~ A i. Then ReSA/k(W/s) = 

= trA/k(~s~l(aiti-tiai) a i) = ZRes A /~(wi/s i) - 
i-- 

Proposition (3.5). - Let k be a ring, A a noetherian 

i 
k-algebra of dimension 1 and X = Spec(A). If w E QA/k and s E S A, 

= Z ReSx(W/S) where Res (w/s) = ReSox/k(W/s) then ReSA/k(W/s) x closed x " 

Proof. The sum is finite because, by (2.6(i)) and (2.i0) 9 whenever 

s(x) / O, Resx(W/s) = O. Let {x i} be the zeros of s, m = sA and 
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= ~im(A/mr). Then, by (VI,6.7) and (II,I.24) , A = H6x. 
l 

the assertion results from (3.3)  and ( 3 . 4 ) .  

Therefore, 

proposition (3.6). - Let k be a ring, A, k' two k-algebras 

I 
and A' = A~k'. If s ~ S A and w ~ ~A/k' then s' = sel ~ SA, 

and ReSA/k(~/s)el = ReSA,/k,(~el/sel ) . 

Proof. Since A'/s'A' = (A/sA)~k', A'/s'A' is k' projective 

of finite rank. Further, the exact sequence O--->A* S>A--~A/sA )0 

is k-split~ so, the sequence O---)A' S'>A1__~A,/stAt > O, obtained 

by tensoring it with k', is exact. 

Choose a k-splitting ~ of A/s2A ,A/sA! then ~' = Gel is 

a k-splitting of A'/(s')2A ' )A'/s'A'. We may assume ~ = adt. 

Then by (VI,6.5) ReSA,/k(~el/sel) = trA,/k,(S-1(~t-t~)ael) = 

= trA/k (s -I (at-ta) a)el = ReSA/k(w/s)el. 

Proposition (3.7) (The trace formula). - Let k be a ring 

and ~ : A ) A' a homomorphism of k-algebras. Suppose A' is 

projective of finite {ank over A. Let TrA,/A be the homomorphism 

id 1 ~trA,/A : ~/k~AA, " I ~/k ~A/k )~A/k" If ~ ~ ~ eAA', s ~ S A, and 

s' = ~(s), then s' ~ S A' and 

ReSA,/k (~/s ' ) = ReSA/k (TrAt/A (~)/s) . 

Proof. Clearly, s' is a non-zero-divisor in A'. Since A' 

is a direct summand of A p, A'/s'A' is a direct summand of (A/sA)P! 

hence, A'/s'A' is k-projective of finite rank. 

Let ~ : A >sA be a k-linear projection Then 

E' = ~idA,: A'. >s'A' is a k-linear projection. Since TrA,/A is 

linear, we may assume ~ = a'dt where a', t ~ A. Let 
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-1( 
= s ~t-t~). Since trA,/A is A-linear, trA,/k((~idA,)a') = 

= trA/k(trA,/A((~ida,)a)) = trA/k(~(trA,/A(a'))) . Therefore, by 

(2.9), ReSA,/k(a'dt/s') = ReSA/k(trA,/A(a')dt/s) = 

= ReSA/k (TrA,/A(a'dt)/s) . 

4. Residues on algebraic curves 

Example. (4. I) . - Let k be a field, T an indeterminate, P (T) 

a monic irreducible polynomial and d = deg(P). Let r(T)/s(T) = 

= (rm (T) /P (T) m) + ... +(rI (T) /P (T) ) + (ro(T)/So(T)) be a rational 

function such that deg(ri(T)) < d for i > O and So(T) ~ 0 mod P(T) 

ad_IT d-I If rl(T) = + ... + a O, then Resx(rdP/s) = ad_ 1 where 

I = Spec(k[T]) is the closed point "cut out" by P. x ~k 

Proof. By (2.6) , Resx(rodP/So)= OI so, by (2.10) , we may assume 
qj 

r O = O. Let P = (T-bj) where b are the distinct roots of P 
3 

in a splitting field. Now, ri (T) /P (T) i = Zhji(T) where hji(T) = 

L ) qj-1 qj 
= (cji(T-b j + ...)/(T-bj) Then, (3.6) , (3.5) , (2.10) , (2.11} and 

qj -I 
(2.12), Resx(rdT/s) = ZReSb (cjid(T-bj)/(T-b j) ) = Zcji~ 

3 

whence the assertion. 

ProDosition (4.2). - Let k be a field, X, Y two S 1 

algebraic curves over k, f : X )Y a covering map~K = F(X,Kx), 

L = F(y,Ky). Suppose f is flat (e.g., X integral and Y normal) 

i 
and generically unramified. Then, for all w E ~K/k' 

ZReSx(~ ) = XReSy(TrK/L(W)). 

Proof. We may assume Y = Spec (O) and X = Spec (A). Since f 
Y 

1 1 
is generically ~tale, by (VI,4.9), ~Ka "/~ = ~L^_~K./~ Furthermore, 
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1 S-1G1 
S = SOy is clearly the set of non-zero-divisors! so, EL/k = Oy/k 

and K = S-IA. Therefore, the assertion follows from (3.7) and (3.5). 

Theorem (4.3)~Residue formula). - Let k be a field, X a 

connected normal curve, proper over k and K its function field. 

1 
Suppose K is separably generated over k. If w ~ ~K/k' then 

Z Res (~) = O. 
x closed x 

Proof. It follows from the hypothesis that there is a finite 

separable morphism f : X ~. Therefore, by (4.2), we may assume 

X = ~k" Further, by (3.6) and (3.5), we may assume k is algebraically 

closed. 

Suppose ~ = adt where a ¢ k(t). By decomposing a into 

partial fractions, using the linearity of Res and changing variables, 

we may assume that a t n = , n 90. However, t n may have a pole only 

at ~ ! so, by (2.6) , Res (w) = O for x ~ ~. If u = I/t n, then 
x 

w = -du/un+2~ so, by (2.12) , Res~(~) = O. 

Theorem (4.4). - Let k be a field and X a connected curve 

I 
smooth and proper over k. Then ~X/k = WX and the residue maps 

coincide. 

I 
Proof. Let K = F(X,K X) and ~ ~ ~K/k" For each f ~ K and 

x ~ X closed, let 8 (f) = Res (fw). Then, by (2.10) , 6 : K ~k 
x x x 

is a k-linear map and, by (4.3) , Z8 (f) = O for all f ~ K. 
x 

Let x be a closed point. Since X/k is smooth, k(x)/k is 

separable. So, there exists a £ k(x) such that trk(x)/k(a) ~ O. 
n 

Let b ~ O have residue class a. If ~ = (U/txX)dt x where t 
x x 

and u ~ * then, by (2.11) ,  a u n i f o ~ i z i n g  p a r a m e t e r  o f  0 x 0 x ,  

is 
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n -1 
x -1 ~I _ dt Resx(f~) / 0 for f = bt x u Therefore, by (2.6) ,~ ~ Ox/k" Ox x 

if and only if 6 (0 x) = O. 
x 

m 
~Olx x where Since w ~ /k for almost all x, the elements t x , 

m x = max(O,nx), define a divisor D such that 6 = (6x) ~ J(-D). 

I 
Therefore, since dimK(J) = I and dimK(~K/k) = I, the map 

1 ~ 
e I ) ~(~) = 6 defines an isomorphism ~X/k----~X. Finally, 

(I) = Res (w). Res x(9(~)) = @(W)x x 
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Notation 

, 
K,(x), K,(X~M), K (x~M), H*(x~M) (M an A-module, xi~ A): 1,4. 

gr*(M), gr*(M) (M a filtered A-module, q an ideal): II,l.4. 

}im M i ((Mi,f ~) a projective system): II,l.6. 

(N a filtered module)- II,l.7. 

rad(A) (A a ring). II,l.20. 

Supp(F) , Supp(M) (F a sheaf, M a module) : II,2.1. 

V(J) (J a sheaf of ideals): II,2.5. 

Ass(M) , Ass(F) (M a module, F a Module) : II,3.1. 

Ann(x) : II,3.1. 

S-IM, S-Ip (M an A-module, p a prime, S ¢ A): II,3.9. 

Q(p) (p a prime ideal)- II,3.14. 

~A(M) , Z(M) (M an A-module) : II,4.1. 

%(M,n) : II,4.10. 

A% (% a polynomial) : II,4.11. 

Q(M,n) : II,4.11. 

P(Mn) : n,4.i3. 

Pq(M,n) : II,4.14. 

dim(X), dimA(M) , dim(M) (X a topological space, M an A-module): III,l.l. 

d(M) , s(M) : III,l. I. 

tr.degkA (k a field, A a k-algebra). III,2.6. 

depthi(M), depthA(M), depth(M) (M an A-module, I an ideal): IV,3.9, 3.11. 

proj.dimA(M) , inj.dimA(M) (M an A-module) .. III,5.1. 

gl.hd(A) (A a ring) : III,5.3. 

E v (E a locally free sheaf): IV,2.6. 

Yr(F) (F a Module): IV,4.2. 

e : IV,5.2. 
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codim(Y,X) (Y a closed subscheme of X) : V,2.9. 

Derk(A,M) (A a k-algebra, M an A-module): VI,I.1. 

I 
(dA/k,nA/~) (A a k-algebra)- VI,I.3. 

UB/A/k, VB/A/k (A a k-algebra, B an A-algebra)- VI,I.5. 

N(i) (i an immersion): VI,i.21. 

~X/Y (X a Y-scheme): VI,6.4. 

tr, Tr: VI,6.5. 

astrx/Y (X a flat cover of Y) : VI,6.5. 

AmaxF (F a locally free sheaf): VI,6.5. 

DX/Y (X a flat cover of Y): VI,6.5. 

dimx(X/Y) , dimx(f) (f a morphism from X to Y, x ~ X): VII,I.3. 

v : VTI,2.4. 

J(X) (X a locally noetherian scheme): VII,3.1. 

~ I(x) (X a locally noetherian scheme)VII,3.1. 

K X (X a ringed space): VII,3.2. 

Div(X) (X a ringed space): VII,3.2. 

Ox(D) (X a ringed space, D a divisor): VII,3.4. 

O D (D a divisor): VII,3.6. 

Pic(X) (X a ringed space): VII,3.7. 

cyc, Vw(D) : VII,3.9. 

Tx/y(x), Tx(f) , df(x) (f a morphism from X to Y, x ~ X): VII,5.4. 

O(g I . . . . .  gN ) 
0(T1 ..... Tn ) (x) : VII,5.14. 

hi(F) , hi(D) , X(F) , M(D) (F a Module, D a divisor) : VIII,I.I. 

deg(D) (D a divisor): VIII,I.4. 

degk(x) (k an artinian ring, x E X a curve over k): VIII,I.6. 

J(F) , 6 : VIII,I.9. 
x 

JX (X an algebraic curve): VXII,I.14. 
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Res: VIII,l.14. 

C, n x, dx: VIII,l.i6. 

[A, Homk(M,N) ] (A a k-algebra, M, N A-modules): VIII,2.1. 

S A (A a ring): VIII,2.3. 

ReSA/k(~/s) : VIII ,2.5. 

TrA,/A (A' an A-algebra).- VIII,3.7. 



Terminology 

q-adic filtration= II,l.l. 

Arithmetic genus: VIII,I.17. 

Artinian (ring, module): II,4.4. 

Associated graded ring, module: II,l.4. 

Associated prime: II,3.1. 

Branch locus: VI,6.3. 

Canonical divisor: VIII,I.II. 

Cartan-Eilenberg resolution: IV,2.1. 

Codimension: V,2.9. 

Cohen-Macaulay module: III,4.1. 

Complete intersection: III,4.4. 

Composition series: II,4.1. 

Conormal sheaf: VI,I.21. 

Constructible: V,4.1. 

Cover: VI,6.1. 

Cycle map: VII,3.8. 

Degree: VIII,I.3. 

Depth: III,3.9 and 3.12. 

k-derivation: VI,I.I. 

Differential, l-differential, differential pair: VI,I.3. 

Dimension :III,l.l. 

Discrete valuation ring: VII,2.4. 

Discriminant: VI,6.5. 

Divisor: VII,3.2. 

Divisorial cycle: VII,3.1. 

Effective divisor: VII,3.5. 

Embedded component, prime, prime cycle: II,3.11. 

Equidimensional: III,l.l. 

Essential prime: II,3.1. 

Etale morphism: VI,4.1. 

Euler-Poincar~ characteristic function: VIII,I.I. 

Factorial domain: VII,2.15. 

Faithful: V,I. 
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Faithfully flat: V,I.3, 

Filtration: II,l.l. 

Flat: V,2.1 and 2.5. 

2.1 and 2.5. 

Generically reduced: VII,2.2. 

Generization: V,2.6. 

Geometric genus: VIII,I.17. 

Global homological dimension: 

q-good filtration: II,l.ll. 

Graded ring, module: II,l.3. 

III,5.4. 

Height: III,3.1. 

Hilbert characteristic function: II,4.10. 

Hilbert-Samuel polynomial: II,4.14. 

Ideal of definition: 

Injective dimension: 

Irredundant: II,3.13. 

III,1.2. 

III,5.1. 

KMhler different: VI,6.4. 

Koszul complex: 1,4.1. 

Length: II,4.1. 

Locally factorial scheme: VII,2.15. 

Locally principal divisorial cycle: VII,3.9. 

Meromorphic functions: VII,3.2. 

Minimal prime: II,3.11. 

Nilradical: II,2.8. 

Noetherian topological space: V,4.1. 

Normal domain: VII,2.6. 

Picard group: VII,3.7. 

Polynomial morphism: ~II,1.1. 

Positive: VII,3.1. 

p-primary: II,3.12. 

Primary decomposition: II,3.13. 

Prime cycle: II,3.11. 

Prime divisorial cycle: VII,3.1. 
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Projective dimension: III,5.1. 

Projective limit: II,l.6. 

Pseudo-differential: VIII,I.9. 

Quasi-faithfully flat: V,2.5. 

Quasi-finite: vI,2.1. 

Quasi-flat: V,2.5. 

M-quasi-regular: III,3.3. 

Radicial morphism: VI,5.1. 

Reduced: VI,3.2. 

M-regular: III,3.1. 

Regular immersion: III,4.4. 

Regular local ring, regular parameters: 

Relative dimension: VII,I.3 

Residue map: VIII,I.14. 

III ,4.6. 

Saturation: II,3.16. 

Scheme with property ~Sk): VII,2.1. 

Second fundamental form: 1,3. 

Separable polynomial: VI,6.11. 

Separated: II,l.l. 

Separated completion: II,I.7. 

Sheaf of l-differential forms: VI,I.21. 

Sheaf of rational pseudo-differentials: VIII,I.12. 

Smooth morphism: VII,I.I. 

Spectral sequence of a composite functor: IV,2.2. 

Support: II,2.1. 

Tangent space: VII,5.4. 

Trace: VI,6.5. 

Uniformizing parameter: VII,2.4. 

Unramified morphism: VI,3.1. 

Yoneda pairing: IV,l.1. 
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