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PREFACE

These notes grew out of a Columbia seminar on Grothendieck's
pourbaki talk [6] on duality and his SGA talks [9] on flat, étale,
and smooth morphisms. They are intended as a second course in algebraic
geometry and assume only a general familiarity with schemes including
Serre's theorems on the cohomology of projective space. The central

result follows:

Theorem. Let kX be a field and X a projective k-scheme of
pure dimension r. Then there exist uniquely a coherent OX—Module Oy
and a "residue' map Nyt Hr(x,wx)——ak such that, for any coherent

Ox-Module F and integer p, there exists a canonical pairing

- n
B2 (X,F) x Extil P(F,0 )~ H (X,0.) —>sk
0, X x! =

which is always nonsingular for p =r and is nonsingular for all p

if and only if X is Cohen-Macaulay. Furthermore, if X is a closed

subscheme of P PE, then o_= Extg_k(OX,OP(—n—i)); if X is smooth

X
P
over k, then wx= Q;/k s and if X is a smooth curve, then

defined by the classical residue symbol.

ny 1is

The material divides naturally into four parts. The first part,

(Chapter I), presupposing the others, discusses o The second,

x*
(Chapters II, III, IV), first develops preliminaries of commutative
and homological algebra; it then establishes the duality theorems.

The third part, {(Chapters V, VI, VII), studies smooth morphisms aiming
for general familiarity. (Lacking notably, however, is a proof of

Zariski's Main Theorem and application to the branch locus of covers

of normal schemes). Finally, the last part, (Chapter VIII),



treating curves, gives the traditional construction of wy and proof

of duality, and, using Tate's elegant approach [13], it proves Ny

arises from residues.

Allen Altman

Steven Kleiman

New York, 1968



Chapter I -~ Study of oy

1. Main Duality Results

(1.1)  Yoneda pairing (IV,1). - Let X be a ringed space and

F,0 two Ox~Modu1es. Then there exists a d-functorial pairing

P (x,F) x Extg—p(F.w)-——'9Hr(X}w)
X

for all integers r,p. Furthermore, if F is locally free of finite

rank, the pairing becomes:

P (x,F) x B P(x,00F) —H (X,0).

{(1.2) Serre duality (IV,4). - Let k be a field, P

n
k,

]

projective n-space cover k, F a coherent OP—Module and wy OP(~n—1).

If 7y ¢ Hn(P,wP)———ak is a fixed isomorphism, then the Yoneda

pairing, composed with n defines a d-functorial pairing which

P’

is nonsingular, or, equivalently, the corresponding map

Extg'P(F,w ) —HP(P,F) *
p P

is an isomorphism of d-functors.

(1.3) Grothendieck duality (IV,5). - Let k be a field,

P = TPE, projective n-space over k, and X a closed subscheme of P

of pure dimension r. Let F be a coherent O -Module,

X
_ o _ n-r . .
WP = OP( n-1) and Wy Ext:P (OX,wP). Then an isomorphism
Mp ¢ Hn(P,wP)———>k defines- a map Ny : Hr(x,wx)——~9k, which, composed

with the Yoneda pairing, yields a pairing

P (X,F) x Extr-p(F,wx)———ek.

%

For p = r, this pairing is always nonsingular. For r - s < p < r,
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L . . . n-p - .
it is nonsingular if and only if Ext:P (Ox,wp) 0. 1In particular,

it is nonsingular for all p if and only if X is Cohen-Macaulay
{e.g., X regular or, more generally, locally a complete intersection

in P).

Furthermore, (I,4.6), if X is smooth over k, then wy = Q;/k’

and (VIII,4.4), if X is a smooth curve, then Ny is defined by
the classical residue symbol.
2. Further discussion of Wy

Proposition (2.1). - Under the conditions of (1.3), the pair
(nx,wx) is a character of X, uniquely determined up to unique
isomorphism.

Proof. The assertion results formally from the following lemma.

Lemma (2.2). - Under the conditions of (1.3), for any map

¢ 3 Hr(X,F)———ek, there exists a unique map £ : F—ay making the

following diagram commute:

S
HI(X.F} ij—n“:ﬂ—* HI(XNE.’{}
N -
., //

N

NP

k
Proof. The assertion results immediately from (1.3).

Proposition {(2.3). - Let P Dbe a regular k-scheme of pure

dimension n and Y (resp. X), a closed subscheme of P (resp. Y) of
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pure dimension s (resp. r). Let w, be an invertible sheaf on P,
n-r n-s .
w = = -
% Ext o {Ox,wp) and vy Ext:P (OY,wP). If Y 1is Cohen-Macaulay,
- S
then o, = Ext v (OX,wY).

0 for

Proof. By (III,5.22) and (IV,5.1), Ext2 (0y,0p)
p

g # n-s; so, the spectral sequence (IV,2.9.2)

4 q p+q
Ext:Y(OX,Ext:P(Oy,wP)):;éExt:P (Ox,wp)

degenerates and yields a cancnical isomorphism

s-r ~ ne-r
Ez_toy (ox’wY)—"E"toP (0y00,)

Proposition (2.4). -~ Let X be a scheme and D an effective
divisor, considered as a closed subscheme of X. Let w be an

X

i, .
OX-Module and wD = Ext:X(OD,wx). Then there exists a natural
isomorphism

050, (O (D)8 ) ==

% D

In particular, if Wy is locally free, then wy is locally free.

Proof. The exact sequence (VII,3.6)

e} ———>Ox(—D) —>OX-—>OD~—-—>O

vields the diagram

Uy e OX {D} ®OK{UX —_ > OD®OX (OX (D) ®OX(DX) —0

|
| | ;

1
Hom X(Ox,wx)———>Hbm:X(OX(-D),wX) —~aExt:X(0D,wx)-—-9O
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whence, the assertion.

Remark (2.5). -~ Under the conditions of {1.3), if X is smooth,
OX(D)Qb o, may be interpreted as the sheaf of differentials on X
X

with poles only along D (the order bounded by D). The homomorphism

OX(D)Gb W0 is often called the Poincaré residue map.

Corollary (2.6). - Let P be a scheme, X a closed subscheme

and o, a locally free OP-Module. If X 1is regularly immersed in
n-r

P of pure codimension n-r, then Wy = Ext:P (Ox,wp) is locally free.

Proof. Since the assertion is local, we may assume X is "cut

out" by a regular sequence of elements fl""’fn-rEF(P'oé)' Let

D. be the closed subscheme of D;_ cut out” by fi' Then Di is

i 1

a divisor on Di— and the assertion follows from (2.4)

1

Proposition (2.7). - Let P be a regular scheme, X a closed

subscheme of pure codimension n-r, w, an invertible sheaf on P

n-r . .
and 0, = Ext:P (Ox,wp). Suppose X 1is generically reduced. Then
there exists an open dense subset U of X such that wxlU is

locally free of rank 1.

Proof. If J is the ideal defining X, then, at any generic

o} i ) = . ’ i
point x of X Jx m So, since oP,x

n-r, J 1is generated by n-r elements on an open set U about x.

is regular of dimension

The assertion now follows from {III,4.5 and 4.12) and (2.4).

Proposition (2.8). - Under the conditions of (1.3}, if X is

reduced, then wx is torsion free of rank 1.

Proof. Let KX be the sheaf of rational functions on X and



define F by O-F -5;9w —wo_® KX' By (2.7), there exists an
X X 0X

open dense subset U on which Wy is invertible. Then
Supp (F) ¢ X - U, so dim (Supp (F)) < r. Therefore, H (X,F) = 0;

so, by (1.3), Hom. (F,0_,) = O. Hence, £ =0 and F = 0.
Ox X

Lemma (2.9). - Under the conditions of (1.3), let,Xi,...,Xp be

the irreducible components of X and X, the generic point of Xi‘

Then the canonical map

Hbmo (F,wx)————en Hom
X X, ,X, i i

is. injective.

Proof. Let f : F-——awx be a homomorphism such that the maps

£ : F.—0 are all zero, and let G = Im(f). Since x, £ Supp(G),
xi xi X,xi 1

dim (Supp(G)) < r. Hence, H (X,8) = 03 so by (1.3), Hom,, (G,wx) = 0.
X

Since G «—w it follows that G = 03 whence, the assertion.

X’

Proposition (2.10). - Under the conditions of (1.3), suppose

that X is integral and that k is algebraically closed in the

function field K of X Then 1 is an isomorphism.

X
Proof. If x is the generic point of X, then K = OX,X‘ Hence
by (2.9), and (2.7), the canonical map
A = Homox(wx,wx)————aHomK(K,K) =K
is injective. However, by (IV,3.2), A is a finite dimensional

k-algebra. Thus A = k and, by (1.3), Hr(x,wx) = k; whence, the

assertion.
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3. Differentials on Projective Space.

Let S be a scheme, X an S-scheme and 0—E'— E 2 5E"—0
a locally split, exact sequence of quasi-coherent OX-Modules. Let
= W(E) (=Spec(S(E))), Y = V(E") and J = ker(S(u)). Then J is
the OZ—ideal defining the closed immersion Y <> Z. The map
2

6+ J/F— ®., 0 defined by dZ/S’ induces a map

z/so Y’
J/J —f, (QZ/S S(E)S(E ), where £ : Z —X is the structure map;

hence, a map a" : E'—f, (QZ/S)®S(E)S(E").

Assume E = Oxxb F where F 1is a quasi-coherent OS—Module

S
and let V =V(F). Then 2 = XxSV: so, by (VI,1.12),
1
Q 3 = L) 1]
%/ X/S® 0 )EB(OX O V/S) and d 2/s (dx/s®1dv)+(1dxxdv/s). The

map a", followed by projection on the first factor, yields a map

S(E"). 1If Ql is locally free of finite rank,

X/S

®, S(E)——f, f* Q X/s is an isomorphism; so, the
X

E'———)f*(f*ﬂ}j&/s)® 52

the canonical map QX/S

1
r . L "
above map becomes a' : E ———9QX/S@b S(E)@%(E)S(E )

To compute a' locally, assume S and X are affine and let

v = [
e Zaiebsti € T'(X,E') where a, € F(X,OX) and t, € r(s,F).

[ 1y =
Then a'(e?) Zdaieb (1Gb ti)®

) s 1 =2:dai@b u(1@ti) where

S(E) <

. , 1
u ¢: E—E"; so, a'(e') is a global section of @ ®. E". Thus a!
X/s OX
induces a map

. ] "

called the second fundamental form of E' in E.
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Theorem (3.1}. - Let S be a scheme, F a locally free
Og-Module of finite rank and P = P(F). Let p : P—S be the
structure map and u ¢ p*F———aoP(i), the canonical surjection. Then
the second fundamental form of Ker(u) in p*F gives rise to an

exact sequence

1

O—-%QP/S

(1) — p*F — 0_ (1) —>0.

. . n _ n1 .
Furthermore, if F is free of rank n+l, then QP/S = A QP/S is

canonically isomorphic to OP(~n-i).

Proof. Let E' = ker(u); we prove that a : E'———+Q;/S(1) is
an isomorphism. Note that by (VII,5.1), Q;/S

finite rank; hence, & is defined. We may work locally and so assume

is locally free of

S is affine with ring A and P = Proj(A[To Tn]) where the Ti
yo ey
are indeterminates. Consider the open affine U = D+(Tj) of P
T T
R \ 0O n
whoge ring is B = A T.""’T,J' If F = Oseo®...®osen, then
J ]
Ty
uf{e,) == 7T, ¢ BT, = r'(u,0_(1)). Hence, T{U,E') is the free
1 Tj 3 3 P
Ty
B-module with basis e{ =7 ej— e i #3j. The form o is given
3
Ty 1
by a(ei) = d 155 ® Tj € F(U,QP/S(l)); since, by (VI,1.4), the
Ts 1
elements 4 |-|® Tj(i £ 3) form a basis of F(U’Qp/s(l))’ a is an
3

isomorphism. The last assertion now follows easily from (VII,3.12).
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4. The Fundamental Local Isomorphism

Definition (4.1). - Let A be a ring and KyseonsX € A. The
Koszul complex K,(x) determined by (x) = (x,,...,x ) is defined

: = p & < =
as follows: Kp(g) AT(;@ Be;) for O<p<r and Kp(g) 0

otherwise. The boundary map dp: Kp(§)———aKp_1(§) is defined by

d (e. A...he, ) = Z(»l)Jx. €, A...A8, A...ne. .
pi i i, i i, i
1 P it 3 p
Lemma (4.2). -~ Let A be a ring, (xi,...,xr) an A-regqular

sequence, I = x1A+...+xrA, and M an A-module. Then K, (x:M) =

= K*(§)8hM is a resolution of M/IM.

Proof. Note that KX, (x3;M) is the (single) complex associated

P.q _ .
to the double complex K = Kp((xl,...,xr~1),M)gﬂq(xr). Further,

we may assume by induction on r that IIEﬁ’q = H?(K*’q) = 0 for
(p,qg) # (0,0) or (0,1) and IIEg’q = M/I'M for ¢q = 0,1 where

I' is the ideal generated by KyreoorX g By assumption,
X 1 M/I'M —3M/I'M is injective; so IIEg’q =0 for (p,q) # (0,0)
and IIEcz)’c’ = M/IM. Since IEp’q==>Hp+q(K*(>_{;M)), K, (x3M) is a

I
resolution of M/IM.

Lemma (4.3). - Let A be a ring, M an A-module and Xy roonXy €A.
Set K*(x3M) = Hom, (K, (x)3M) .and HP(x;M) = BP(K*(x;M)) and define
r . ol - t = 1 1
¢§ : K (X3M)—>M by ¢§(a) a(eiA..,Aer). Then ¢§ induces an

isomorphism

L H (x3M)—2M/IM

where I is the ideal generated by KyseeosX o

Proof. Note that ¢f(d(b)) e¢ IM for each b e Kr—1(§:M): thus,
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@ induces the required map Pye It is clearly surjective. Suppose

(a) = 0. Then a(elA...Aer) = ijyj for suitable yj ¢ M. Define

[

L4
r-1, r 3
b : A (37) —>M by b(elA...AéjA...Aer) = (-1) yj. Clearly,

da(b) = a and, hence, Py is injective.
Lemma (4.4). -~ Let A be a ring, M an A-module and I an

ideal of A. Let (xi,...,xr) and (yi,...,yr) be two A-regular

sequences which generate I and let vy = Zcijxj where cije A.

Then there exists a commutative diagram

x
ExtA(A/I,M) det(cij)

M/IM

Proof. Since (x) and (y) are A-regular, Ext;(A/I,M)
= Hr(§=M) = Hr(gsm) by (4.3). Furthermore, Ac : K, (y)—sK,(x) is
a d-isomorphism. Since Ae = det(cij), the commutativity results from

the definitions.

Theorem {4.5). - Let P be a scheme, X a closed subscheme, J

its sheaf of ideals and F a quasi-coherent OX—Module. Suppose X

is regularly immersed in P. Then there exists a natural isomorphism

o r 2
@ ¢ Extcp(OX,F)—CieHomcx(A {(3/3%) ,F/IF)

where r = codim(X,P).

Proof. Let U be an affine open set of P on which J is a

regular ideal; let A be the xing of U, M = I'(Uu,F) and I = r(U,J).
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Then I 1is generated by an A-regular seguence (xl""’xr) and
I/I2 is free of rank r over A/I by (I1I,3,4); hence, the exterior
product xi,A...Ax; of the residue classes xi generates Ar(I/I )}

and we may define

¢ ¢ Ext;(A/I,M)———aHomA/I(Ar(I/IZ),M/IM) by

p(a) (xfnr...axl) = ¢§(a).
If (yi,...,yr) is another A-regular sequence that generates
I, then there exist Cije A such that vy = Zcijxj. Then
YyAe-oAy, = det(c..)xlA...Axr and, by (4.4), ¢(a)(y1A...Ayr) =

= det(c )@(a)(x Av..AX ) det(c )w (a) = @Y(a). Hence, ¢ is
independent of choice of generators of I and, by (Iv,3.2), ¢

defines a global isomorphism.

Theorem (4.6). - Let P be an S-scheme and X a closed sub-

scheme. Suppose X and P are smooth over S of relative

dimensions n and r. Then

r o
QX/S = Ext:P (o P/S
, , n n-r
In particular, if P ='WS and o, = Ext . (OX,OP(-n—l)), then
_x
“x = %5 -

Proof. By (VII,5.13}, X is regularly immersed in P. Hence,

by {4.5) and (IV,3.4), Ext:P (o P/S = Hom:x (J/J Y, QP/S@b 0y) =
= (A7 r(J/J )Y P/S where J is the sheaf of ideals of X in

1
P. Now, by (VII,5.8), the sequence O<—»J/J - QP/S® Oy — QX/S‘“*O

, r

is exact. Therefore, by (VII,3.12), QX/S = (A" (J/J Y ®OPQP/S 3

whence the first assertion. The second now results from assertion
(3.1).



Chapter II - Completions,

Primary Decompogition and Length

1. Completions

Definition {1.1). - Let A be a ring. A family of ideals (An) s
n € N, is said to form a (descending) filtration of A , if AO = A,

A < A and A A Cc A
n n'm

n+1 . Let M be an A-module. A family of

n-+m

submodules (Mh) is said to form a (compatible) filtration if

Mo =M, Mn+1 < Mn and AmMn 4 Mm+n . The filtration (Mn) is said

to be geparated if n Moo= O . Let g be an ideal of A . The g-adic

filtration of A is defined by A = q® ; the g-adic filtration of

M is defined by Moo= an .

Remark (1.2). - If A is a filtered ring, the sets An form a
system of neighborhoods of O for a topology on A which is compat~-
ible with the ring structure of A . Similarly, if M is a compat-
ibly filtered A-module, the sets Mn form a system of neighborhoods
of O for a topology on M , which is compatible with the topology

on A .

Definition (1.3). ~ A ring A 1is said to be graded if there ex-
ists a family of subgroups (An) such that A = @& An and
- i i ib
AA CA . BAnA-module M is said to be (compatibly)

graded if there exists a family of subgroups (Mn) such that

M= Mn and AmMn < Mm+n .

Remark (1.4). -~ Let A be a filtered ring and M a compatibly

. n _ n _
filtered A-module. Let gr () = An/A , and gr (M) = Mn/Mn+1 .

n+i
Then gr*{(a) = @grn(A) is called the associated graded ring and

gr*(M) = @grn(M) the associated graded gr*{A)-module. If A and M
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*
are filtered by the g-adic filtration, we also write grq(A) for

gr*{a) and gr;(M) for gr*(M).

Lemma (1.5). -~ Let A be a filtered ring and u : M—>N a
homomorphism of filtered A—modules,(u(Mr)ch). Suppose ﬂMr= 0. If gr*(u)

is injective, then u is injective.

Proof. Since gr*(u) is injective for each r,

-1 . .
M u (Nr+1)c Mr+1‘ it follows by induction that

-1 . .
>
Mr_kn u (Nr+1) < Mr+1 for each r and each k > 0; in particular,
1

- -1 -1 _
for Xk =r, u (Nr+1) ¢ M_,,. Therefore, u (0) ¢ nu (Nr) ¢ nM. = 0.
Definition (1.6). - Let A be a ring. A collection of
A-modules {Mi} and A-homomorphisms fi+1: M, M i>o, is

said to be a projective system of A-modules indexed by #. The

1+1
+,

projective (or inverse)limit of {Mi’fi denoted lim Mi’ is an

A-module M together with maps fi H M-———-»Mi such that
fi ° fi+1= fi for all 1 satisfying the following universal
property:

If M' is an A-module together with maps 95 M'— Mi such that
i+1

£ °934™ 93

for all i, then there exists a unique map
g : M'—M such that 9;= fiog.

i+t

i } be a projective system

Proposition (1.7). - (i) Let {Mi,f

of A-modules indexed by IN. Then the projective limit exists.

(ii) Let N be a filtered A-module with filtration (Nn).
Then the projective limit lim N/Nn is the topological, separated
completion N, (namely, the set of Cauchy sequences of elements of N

modulo the following equivalence relation: {xn}rv {yn} if, for each
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. _ > .
m ¢ [N, there exists an ng such that X = Y€ Mm for all n > no)

Proof. To prove (i), let P = m, and let M ¢ P be the sub-

) = x..

s s i+l
module consisting of elements (xi) € P such that fi (xi+1 i

Let fi: M-———-)Mi be the projection P, P———)Mi restricted to M.
i+l

- ' . .
Clearly, fi °fi+1 fi' Now, let M' be given together with maps 9.

By definition of P, there exists a unique map g : M'—P such that

— no . i+l - ; '
9;= P9. Since fi °9i41= 95 it follows that g(M!') ¢ M. Hence,

M 1is the projective limit of {Mi’fi+1}
s s _ . ' -~ v = '
To prove (ii), let N = lim N/Nn, x' ¢ N, x (x!). For
each n, choose x € N representing xé. If m = n, then

X = X mod Nn’ so (xn) is a Cauchy sequence in N. 1If Y€ Nn
1 - 1]
also represents x5 then Y~ X, € Nn for each nj; so, x F——a(xn)
is a well-defined map ﬁ-——ﬂﬁ. If (xn) = 0, then (xn)———ao in N;
it follows that x € Nn for all n and that x' = 0. Finally,
given a Cauchy sequence (yn), inductively choose a subsequence (xn)
such that x - X €N for each n. Let x' € N be the residue
n+1 n n m m
)
class of ¥ - Then (xm)k——»(ym).

Remark (1.8). - If an A-module M has two filtrations (Mn)
and (Mﬁ) such that for each n there exists an m such that
M ¢ M! and for each m' there exists an n' such that M', ¢ M ,,
n m m n
then both filtrations induce the same topology on M; hence, by (1.7),

the separated completions are equal.

In particular, let g and g' be ideals of A such that
q'cq and qnc q' for some n. Then the g-adic and the g'-adic
topologies on A and M are the same, so the corresponding

separated completions coincide.
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Lemma {1.9). - Let
£ g

) A D . B N, ¢ )
n n n
{ n+l rn+l i+l
u W

n n n
o ﬁAn+1 B+f ) °

be a projective system of exact sequences of abelian groups. Then:
(i) The sequence

0 —>1im An———g——>Lim Bn-—~g——»%ig <,

is exact.

;s + . . . .
(ii) I1f ug 1 is surjective for each n > 1, then g is sur-

jective.

Proof. The first assertion follows immediately from (1.7,(i)).
Given ¢ € lim C_, take b' ¢ B such that g (b!') = ¢_. Construct
n n n n n n

, - . . . = Wt
b ¢ lim Bn such that g{b) = ¢ inductively as follows: Let bo bo;

. n _
given bn such that vn—l(bn) = bn-i' and gn(bn) =c > note that

n+l ., - .
n(vn (bn+1)-bn) = 0. Hence, there exists a ¢ An such that

. o+l ., . .
fn(an) = v, (bn+1) b . By hypothesis, there exists a ¢ A _,

n+l _ = 1 -
such that uy (an+1) =a.- Let bn+1— bn+1 fn+1(a

b e !im Bn and g¢g(b) = c.

n+1). Then

Proposition (1.40). - Let A be a filtered ring and M a

filtered A-module. Then M/Mn= ﬂ/ﬂn and, hence, gr(M) = gr(ﬁ).

Proof. For a fixed integer n, the filtration (Mm) induces

filtrations (Mnn Mm) of M and (Mn+ Mm/Mn) on M/Mn. By (1.9),
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’~
the sequence O<——?Mn-——>ﬁ ——e(M/Mn)A———eo is exact. However, since

M/Mn is discrete, it follows that M/Mn is itself complete.

Definition (1.11). - Let A be a noetherian ring, g an

ideal of A and M a finite A-module. A filtration (Mn) is said
to be g-good if there exists a positive integer ny such that for

k
> = >
each n 2 ) Mn+k o Mn for all k 2 0.

Proposition (1.12). - Let A be a noetherian ring, g an

ideal of A and M a filtered A-module of finite type. The
following conditions on the filtration (Mn} are equivalent:
(i) The filtration (Mn) is g-good

(ii) There exists an integer n, such that M o= M for all n 2 n

(iii) gr(M)is a gr;(A)—module of finite type.

Proof. The equivalence of (i) and (ii) is trivial. If (i)
n

0
holds, then gr(M) is generated by & Mn over gr(A); since M
m=0Q

is of finite type over A, it follows that gr(M) is of finite type

over gr;(A). If {iii) holds, let x beee s X be homogeneous genera-

1
tors of gr{(M). Then, clearly, for n > sup{deg(xi)}, we have

Mn+1= an'

Remark (1.13). - Let A be a ring and q an ideal of A.

Suppose A/q 1is noetherian and q 1is finitely generated. Then
%*
grq(A) is a finitely generated (A/q)-algebra: hence, gr;(A) is

noetherian.

Theorem (1.14) (Artin-Rees). - Let A be a noetherian ring,

q an ideal of A, M an A-module of finite type and N a submodule
of M. Then the filtration induced on N by the g-adic filtration

of M is g-good; i.eg., there exists an integer n, such that for
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Nﬂqn+kM = qk(Nﬂan) for all k > O.

+ C s .
Proof. The map Nﬂan/Nﬂqn+1M-——~>an/qn 1M is injective;

hence, gr(N)-—>gr(M) is injective. Since gr(M) is of finite type
by (1.12) and gr(A) is noetherian by (1.13), gr(N) is of finite

type and the assertion follows from (1.12).

Theorem (1.15) (Krull intersection theorem)l Let A be a noetherian

ring, g an ideal of A and M a finite A-module. Then x ¢ nan
if and only if there exists d € g such that dx = x. In particular,
ﬂan = 0 (or equivalently, M—M is injective ) if and only if,

whenever dx = x where d ¢ q and x ¢ M, then x = 0.

Proof. Let N = nan. By (1.14), there exists an integer k
such that anﬂN = qn~k(quﬂN) for n > k; hence, gN = N. Now, the

assertion follows from the next lemma.

Lemma (1.16). - Let A be a ring, N a finite A-module and g
an ideal of A. Then N = gN if .and only if there exists d ¢ ¢

such that (1-d)N = 0.

Proof. Let x e X generate N. If N = gN, then there

1
exist a,.¢ g such that x.= Za,.x.. If 1-d = detld,.-a,.l, then
ij i ii’j ij "ij

d e g and (1-d)xi= 0, 1 < i< s. The converse is trivial.

Proposition (1.17). - Let A be a noetherian ring, g an

ideal of A and M a finite A-module. Then the additive functor

MM = lim M/an is exact.

Proof. exact sequence of of A-modules

O—M!' —»M —>M" —0
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induces an exact sequence
n n " n "
0—sMt/(M'Ng M) —M/q M—M" /g M" —0
for each positive integer n. By the Artin-Rees lemma (1.14) and by

(1.8), the separated completion of {M‘/M'nan} is (M‘)T The

conclusion now follows from (1.9).

Theorem (1.18). - Let A be a noetherian ring, g an ideal of
A and M a finite A-module. Then the canonical map M®Aﬁ~w~eﬁ is

an isomorphism.
Proof. By (1.17), an exact sequence
i, Al
A"y A" —> M —0

yields a commutative diagram with exact rows.

Al@A.'»’\ s Mg a Mg, A o
| 7
f g h
¥ b v
at Al M 0.

Since f and g are clearly isomorphisms, the five lemma implies

that h is an isomorphism.

Proposition (1.19). - Let A be a noetherian ring, g and

I ideals of A and M a finite A-module. Filter A and M
g~-adically. Then, IM = ()" = In and, hence, ﬁ/Iﬁ = (M/IM)A. In

particular, M/an = ﬁ/qnﬁ = ﬂ/&nﬁ, and grq(M) = grq(ﬁ)= grq(ﬁ).

Proof. Consider the commutative diagram



L.
I@M@P« — 2 st M

N

THME, A _

By (1.18), u is an isomorphism, so the image of v is IM. On the
other hand, by (1.17) and (1.18), w is an injection with image (IM) |,
so the image of v is (IM)A. Consequently, 1A = E and

M = 1AM = IM; whence, by (1.17), the first assertion. The second

assertion now follows from (1.10).

Lemma (1.20). - Let A be a noetherian ring and B a
noetherian A-algebra. Let g be an ideal of A and g' an ideal
of B such that ¢gB ¢ g' ¢ rad(B). Let M be a finite A-module
and N a finite B-module. Filter A and M g-adically; B and N
q'-adically. Let ¢ : M——>N be an A-homomorphism and consider the

commutative diagram that ¢ induces:

M/qM ——2 o N/aN

o B
~ \p| -~ A
M/gM — 5 N/aN.
Then:

A
(i) If ¢ is surjective, then P is bijective and p" is surjective.

(ii) If B and ¢" are surjective, then $ is surjective.

Proof. If ¢ 1s surjective, then ¢' is surjective; so B is
surjective. Since q'crad(B), it follows from (1.15) and (1.19)

that B is injective, whence, (i).
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If B and 9" are surjective, then ' is surjective. Hence,

N = Q(ﬁ) + qﬁ. So, qnﬁ = @(qn&) + qn+1ﬁ for all n > 0, and we are

reduced to proving the following lemma.

Lemma (1.21).-Let A be a ring and u : M—3N a homomorphism
of filtered A-modules. Suppose M is complete, N is separated and

gr (u) is surjective. Then u is surjective and N is complete.

Proof. Let r be an integer and let vy ¢ Nr. We shall con~
struct a sequence (xk) of elements of Mr such that

X = X mod Mr+k and u(xk) £ y mod N_ - Let X,= O. Suppose X

has been constructed. Then u(xk) = y mod N s0, by hypothesis,

r+k?

there exists t, € Mr Let

k
Xpepr1™ X” tk and x be a limit of the Cauchy sequence (xk). Since

such that u(tk) = u(xk)—y mod N

+k r+k+1°

M_ is closed, x ¢ M_, and, since N is separated, u{x) = lim u(xk)
is equal to y. Therefore, u(Mr) =N 3 hence, u 1is surjective

and the topology on N is the quotient of the topology on M.

Proposition (1.22). - Let A be a ring and g an ideal of A.

Suppose A/g is noetherian and g is finitely generated. Then

A = lim A/qr' is noetherian.

A ~ *
Proof. Let I be an ideal of A, By (1.19), gr;(A)= grq(A):

yees X be

hence by (1.13), gr;(I) is finitely generated. Let Xy s

r,
elements of I whose images x{ € gr 1(a) generate gr;(I). Filter

~ S A
E = A° by E= &A . Then gr*(E) = gr*(A)s. Define u : E —3I
i=1 i
by u((ai)) = Eaixi. Then gr{u) is surjective; so, by (1.21), I is

finitely generated.

Lemma (1.23).- Let A be a ring. ¢ an ideal of A, & = Lim A/qn
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and g = lim a/q9" . Then gA ¢ & ¢ rad(3)

-~

Proof. Suppose X € a . Then x" ¢ qn , 8O zx" converges.

Hence, for all x € a , 1/{(1-x) = zx” € A . Therefore g ¢ rad(3)

Proposition (1.24). Let A be a ring and q an ideal of A .

The map mb> m  induces a bijection from the set of maximal ideals of
A containing g to the set of all maximal ideals of A . Hence, if

A is local (resp. semi-local), then 3 is local (resp. semi-local).

A M
Proof. By (1.10), A/q = A/q . Hence, the assertion results from

(1.23).

2. Support of a sheaf

Definition (2.1). - Let X be a ringed space and F an Ox—
Module. The set of points x € X such that F # 0 1is called the
support of F and is denoted Supp(F). If A is a ring and M is
an A-module, the support of M , denoted Supp{M) , is defined as

Supp(ﬁ) ¢ X = Spec(A).

Remark (2.2). - Let X be a ringed space and
O0—F!' 5 F —3F"—50 an exact sequence of Ox-Modules. Then, clearly,

Supp(F) = Supp(F') U Supp(F").

Proposition (2.3). - Let X be a local ringed space and F,F!

Oy~Modules of finite type. Then Supp(F) is ¢losed in X and
Supp(F ® F') = Supp(F') n Supp(F) .
Proof. Since the support of a section is closed and F is of

finite type, Supp(F) is closed. The second assertion results from

the following lemma.



- 25 =

Lemma (2.4). - Let A be a local ring and M,N two nonzeroc

A-modules of finite type. Then MR, N is nonzero.

Proof. Let m be the maximal ideal of A. Then, by
Nakayama's lemma, M/mM and N/mN are nonzero vector spaces over the

field A/m; hence, their tensor product
(M/mM) ® A/m(N/mN) = (M® AN) ® AA/m

is nonzero.

Proposition (2.5). - Let X be a scheme, F a quasi-coherent
Ox—Module of finite type and J the annihilator of F. Then Supp(F)

is the underlying point-set of the subscheme V{(J) defined by J.

Proof. We may assume X is affine with ring A and F =M
where M is an A-module of finite type. Let Xyreeer¥y be generators
of M and I, the annihilator of x;. Then v(J) = UV(Ii). On the
other hand, Supp(M) = USupp(Axi) = USupp(A/Ii) and it is clear that

Supp(A/Ii) = V(Ii), whence the assertion.

Corollar 2.6). - Let X be a scheme, J a sheaf of ideals
and F a quasi~coherent Ox—Module of finite type. Then Supp(F/JF) =

= Supp(F) n vV(J).

Lemma (2.7). ~ Let £ : X——Y be a morphism of schemes and F

an O -Module of finite type. Then Supp(f*F) = f-i(Supp(F)).

Proof. If x ¢ Supp(f*F), then F 0.#0 and

f(x)gbf(x) X

X € f_i(Supp(F)). Since Of(x)———aox is a local homomorphism,

ox/mf(x)ox# 0, so, if Ff(x)% 0, then, by (2.4), Ff(x)@bf(x)ox% o

and x € Supp(f*F).
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Proposition (2.8) (Weak Nullstellensatz). - Let A be a ring,

M a finite A-module and f ¢ A. Then the homothety £ : M— M
is nilpotent if and only if f 1lies in every prime of Supp(M). 1In
particular, the nilradical of A (i.e., the set of all nilpotent

elements of A) is the intersection of all (minimal) primes of A.

Proof. The homothety f : M——M is nilpotent if and only if

M= O; hence, if and only if g = Supp(Mf) = Supp{M) N D(f) where

D(f) is the set of primes not containing f.

3. Primary decomposition

Definition (3.1). - Let A be a ring and M an A-module. A
prime ideal p of A is said to be associated to M if there exists
an element =x € M such that p is the annihilator of x. Let Ass(M)
or AssA(M) denote the set of associated primes of M and let Ann(x)
denote the annihilator of x. If I is an ideal of A, the primes of
Ass{A/I) are called the essential primes of I. If X 1is a scheme
and F is an OX—Module, then Ass(F} is defined as the set of points

X € X such that m_ e Ass(F ).
X X

Remark (3.2). - Let A Dbe a ring and M an A-module. It is
clear that a prime p of A is associated to M if and only if
there éxists an injection A/p ——M. In particular, if N is a sub-
module of M, then Ass(N) ¢ Ass{M). Furthermore, Ass(A/p) contains

only the prime p and p = Ann(x) for all nonzero x € A/p.

Proposition (3.3). - Let A be a noetherian ring and M an

A-module, Then M =0 1if (and only if) Ass(M} = d.

Proof. If M # 0, let I be an ideal of A which is maximal
among ideals of the form Ann(x) for nonzero elements x of M.

Since x # 0, I #A. Suppose b ,c ¢ A, bc ¢ I. If cx # 0, then
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b € Ann(ex) and I ¢ Ann(cx). By maximality, we have I = Ann(cx)

and hence b ¢ I. Therefore, I is prime and I e Ass{M).

Corollary (3.4). - Let A Dbe a noetherian ring, M an A-module

and a € A. Then the homothety M —25M is injective if and only if

a does not belong to any associated prime of M.

Proof. If a belongs to an associated prime, then clearly the
homothety is not injective. Conversely, suppose ax = 0 for some
nonzero X € M. Since Ax # O, there exists p ¢ Ass(Ax) by (3.3).
Then p ¢ Ass(M) and p = Ann(bx) for some b ¢ A. Since abx = 0,

it follows that a € p.

Corollar 3.5). -~ The set of zero divisors of a noetherian

ring A is the union of the associated primes of A.

lLemma (3.6). — Let A Dbe a ring, M an A-module and N a

submodule of M. Then

Ass(M) ¢ Ass(N) U Ass{M/N).

Proof. Let p € Ass(M), E the image of the corresponding
map A/p--sM and F = ENN. If F =0, then E is isomorphic to
a submodule of M/N3; hence, p ¢ Ass(M/N). If F #0 and x is a
nonzero element of F, then Ann(x) =p by (3.2). Hence

p € Ass(F) ¢ Ass(N).

Theorem (3.7). - Let A Dbe a noetherian ring and M a finite
A-module. Then:

(i) There exists a filtration M = MO)...JMn= O such that

4?_-.! Y -
Mi/Mi+1 A/pi where p; is a prime of A.

{ii) For any such filtration Ass(M) ¢ {Po”"’pn-i} ¢ Supp{(M).

In particular, Ass(M) is finite.
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Proof. To prove (i), let N be a maximal submodule of M
having such a filtration. If M/N # O, then, by (3.3} M/N contains
a submodule N'/N isomorphic to A/p for some prime p of A, con-

tradicting maximality. Hence M = N.

The first inclusion of the second assertion follows immediately
from (3.2) and (3.6). Since p;¢ Supp(A/pi), the second assertion

follows from (2.2).

Lemma (3.8). - Let A be a ring and M an A-module. If V¥
is a subset of Ass(M), then there exists a submodule N of M such

that Ass(N) = Ass{M) - ¥ and Ass{M/N) = V.

Proof. By Zorn's lemma, there exists a maximal submodule N of

M such that Ass(N) ¢ Ass(M) - ¥. By (3.6), it suffices to show that
Ass(M/N) ¢ ¥. Let p € Ass{(M/N)s; then M/N contains a submodule
N'/N isomorphic to A/p. By (3.2) and (3.6}, Ass(N') ¢ Ass(N) U {p}.

Since N is maximal, p € V.

Proposition (3.9). - Let A be a noetherian ring, S a multi-
plicative set, & the set of primes not intersecting S and M an
A-module. Then the map ph—-qs_ip is a bijection from AssA(M)n ¢ to

-1
sss—iA(S M) .

Proof. The map p+——S 'p is a bijection from & to the set
of primes of S-lA. Furthermore, if A/p —>M is injective, then
-1 -1 -1 - . P . .
S "(Aa/p) =S A/S p—>S 1M is injective; so, if p € Ass(M)n o,

then S_lp € Ass(S_lm).

-1 - .
Let S "p € Ass(S 1M)s there exist x e M and t € 8 such
-1 . . L s
that 8 "p = Ann(x/t). Since p is finitely generated, there exists

an element s € S such that p ¢ Ann(sx). Moreover, if bsx = O,
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then b/1 ¢ S_lp and, hence, b € p. Thus, p = Ann(sx) and the proof

is complete.

t

Corollary (3.10). Let A be a noetherian ring and M an

A-module. Then Supp(M) = UV(p) as p runs through Ass(M).

Proof. By (3.3}, Mp# O 1if and only if Aass, (Mp) # 8.
P
However, by (3.9), Ass, (Mp) # @ if and only if there exists

P
g € Ass{M} such that gq N (A-p) = @; i.e., if and only if p » g for

some ¢ € Ass(M).

Remark (3.11). - Let A be a noetherian ring and M an

A-module. The minimal primes of Ass(M) are called the minimal {or

isolated) primes of M and, by (3.10), they correspond to the maximal

points of Supp(M). Those primes of Ass(M) which are not minimal

are called embedded primes.

Let X be a locally noetherian scheme and F an OX—Module.
A prime cycle of F 1is defined as a closure in X of a point

x € Ass{F). An embedded prime cycle of F is defined as a prime

cycle which is properly contained in another prime cycle of F. The

embedded prime cycles of oX are often called the embedded com-

ponents of X.

Definition (3.12). ~ Let A be a noetherian ring, M an
A-module and @ a submodule of M. If Ass(M/Q) consists of a single

element p, then @ is said to be p-primary with respect to M.

Definition (3.13). - Let A be a noetherian ring, M an
A-module and N a submodule of M. A primary decomposition of N in
M is defined as a finite family {Qi} of submodules of M which

are primary with respect to M and such that N = nQi. A primary
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decomposition is said to be irredundant if it satisfies the following

two conditions:

n .
(a) j$i Qj ¢Qi for any i.

{(b) 1f p; is the prime corresponding to Q,, then pi% P when-

ever i # j.

Theorem (3.14). - Let A be a noetherian ring, M a finite

A-module and N a submodule of M. Then there exists a primary
decomposition of N in M, {Q(p)}, where p runs through Ass(M/N)

and Q(p) is p-primary.

Proof. Replacing M by M/N, we may assume N = O. By (3.8),

there exists, for each p € Ass(M), a submodule Q(p) of M such

that Ass(M/Q(p)) ={p} and Ass(Q(p)) = Ass(M) - {p}. Let P = nQ{p).

Then Ass{P} ¢ Ass{Q(p}) for all p € Ass{M); hence, Ass(P) .

Thus, by (3.3), P = O.

Proposition (3.15). - Let A be a noetherian ring, M an

A-module and N a submodule of M. Let {Qi} be a primary decom-
position of N in M and P; the prime corresponding to Q- Then
Ass{(M/N) ¢ {pi} and the decomposition is irredundant if and only if
Ass(M/N) = {pi} and the p; are distinct. Consequently, if M is
of finite type, then the associated primes of M/N are precisely the
associated primes of the M/Qi appearing in an irredundant decom~

position of N in M.

Proof. Since N = ﬂQi, there is an injection M/N<——+&ﬂVQi.
So, by (3.2) and (3.6), Ass(M/N) ¢ {pi} and, if equality holds and the

. v (1 .
p; are distinct, ki Qj ,é:Qi for any 1i.

. . = N =
if {Qi} is irredundant, let P, %1 Qj‘ Then P.n Q,= N,

Pi/N = (Pi+ Qi)/Qic M/Qi and Pi/N ¢ M/N. It follows that

p; ¢ Ass(Pi/N) ¢ Ass (M/N).
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Remark (3.16). - Let A be a ring, 8 a multiplicative set,
M an A-module and N a submodule of M. Then the inverse image N!
of s™IN under the map M——s"IM is called the saturation of N
with respect to 8. C(Clearly, N' is the set of all X ¢ M such that

sx € N for some s € S.

If N is p-primary and SNp = @, then the homothety
s : M/N——M/N is injective by (3.4). Therefore, the saturation of

N is equal to N.

Proposition (3.17). - Let A be a noetherian ring, M an

A-module, N a submodule of M and I = Ass(M/N). Let S be a
multiplicative set, J the subset of I consisting of those primes
pj such that Sﬂpj= #, and N' the saturation of N with respect
to S. If {Qi} is an irredundant primary decomposition of N, then
1

is an irredundant primary decomposition of § N and

{g.7. is an irredundant primary decomposition of N'.

. -1
Proof. It follows easily from 13.9) and (3.15) that {8 Qi}ieJ

is an irredundant primary decomposition of S_lN; hence, by (3.16),

we conclude that {Qi} is an irredundant primary decomposition

ied

of Nt'.

Corollary (3.18). ~ Let A Dbe a noetherian ring, M an A-

module and N a submodule of M. If Py is a minimal prime of M/N
and {Q{(p)} is an irredundant primary decomposition of N in M,

then Q(po) is uniquely determined by N.

Proof. If 8 = A»po, then Q(pO) is the saturation of N with

respect to 8 by (3.17).
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4. Length and characteristic functions

Definition (4.1). - Let A be a ring and M an A-module. A
filtration

M =M o Mn= (0)

is said to be a composition series if each quotient Mi/Mi+1 is a
simple A-module. By the Jordan-H8lder theorem, any two composition

series of M have the same number of terms; that number, n, is called

the length of M and denoted fA(M) or f(M).

Remark (4.2). - Let O —> M' —>M —sM" —>0 be an exact
sequence of A-modules. Then it is easily seen that M has finite
length if and only if M' and M" have finite length. In this case,
we have

M) = (M) + M),

Proposition (4.3). - Let A be a noetherian ring and M a

finite A-module. Then M has finite length if and only if Ass{M)

(resp. Supp(M)) consists entirely of maximal ideals.

Proof. Since all simple A-modules are isomorphic to A/m for
some maximal ideal m of A, the assertion follows from (3.7) and

(3.10).

Definition (4.4). - Let A be a ring. An A-module M is said

to be artinian if every nonempty set of submodules of M has a
minimal element, (or equivalently, if every descending chain of sub-

modules stops).

Proposition (4.5). - Let A be a ring. An A-module M has

finite length if and only if it is both artinian and noetherian.
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Proof. If M has finite length, then, by the Jordan-HSlder
theorem, every chain of submodules has finite length; hence, M is
both artinian and noetherian. Conversely, construct a filtration
(Mi) of M as follows: Let M= M and let Mg be a maximal

proper submodule of Mi‘ Since this descending chain stops, it is

a composition series of M.

Lemma (4.6). - Let A be a ring in which 0 is a product of
maximal ideals My yeeesHm . Then any prime p is one of the m, and

A is both artinian and noetherian. Moreover, if the A/mi are
algebras of finite type over a field k, then A has finite

k-dimension.

Proof. Since p > 0 = my...m it follows that p = m, for
some i. Let Ij= M. mj for 1< 3 <n. Then A has a finite
filtration I, 2...>1I =0 whose quotients Ij~1/1j are finite
vector spaces over A/mj. Hence, by (4.5), A is both artinian and
noetherian. Moreover, if A/mi is of finite type over k, then it

has finite k-dimension by the Hilbert Nullstellensatz (III,2.7);

whence, the assertion.

Theorem (4.7). - A ring A is artinian if and only if the
following two conditions hold:
(i) A is noetherian.

(ii) Every prime ideal of A is maximal.

Moreover, if A is artinian, then A has only a finite number
of primes and rad(A) is nilpotent. 1If, in addition, A is of finite

type over a field k, then A has finite k-dimension.

Proof. Suppose A is noetherian. Then by noetherian induction,

every ideal of A contains a finite product of primes. If, in
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addition, every prime is maximal, then O may be written as a product

of maximal ideals. Hence, by (4.6), A is artinian.

Conversely, suppose A 1is artinian. Let m be the smallest
product of maximal ideals of A. Let S be the set of ideals con-
tained in m such that Im # 0. If I € S is minimal, then
m21 = mI # O3 hence, by minimality, mI = I. Since m ¢ rad(A), if
I =xA, then I =0 by Nakayama's lemma. Therefore, if x € I, then

2

Xm = 0; so Im = O. Hence, S must be empty and m =m = O. Thus,

by (4.6), A is noetherian and every prime is maximal.

Corollary (4.8). - Let A be an artinian ring and M a finite

A-module. Then M has finite length and Ass(M) = Supp(M).

Proposition (4.9). - Let A be an artinian ring and My seoe,m

r

the maximal ideals of A. Then:

(i) The natural map u : A-——»HAm, is an isomorphism.
i

(ii) PFor n sufficiently large, the natural maps vy Am————>A/m?

i
are isomorphisms.

Proof Since X = Spec(A) is discrete, u is simply the natural

isomorphism A——z»r(x,ox).

In general, any s £ m, becomes a unit in the local ring A/h?;

hence, by the universality of Am P Vg exists. For fixed i, consider
i
: - T
u, s A———aAmi. Clearly, there exists s e(j%i mj) m, for any n. By
(4.7), if n >> 0, then sa =0 for any a € m?; so, u; induces

n .
u! : A/m,—>A , an inverse to v..
i i m, i

Lemma (4.10). - Any polynomial P ef[n] of degree d may be

expressed in the form
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n

d—i(d—l) + ... +cC

- n
P(n) = c (5 +c o

where c e Q. 1t P(n) is an integer for all large integers n, then

the c, are all integers.

Proof. The assertions follow easily by induction on s from the

formulas

n® = st (‘s‘) + P'(n)

(h+1) _{ny n )
s s/ \s-1
where P' is a polynomial of degree s-1.

Let H =& Hn be a graded ring such that H is an artinian

0
ring and H is generated over HO by a finite number of elements of
Hl' Let M =6 Mn be a graded H-module of finite type. Then, by

(4.8), the H,-module M, being of finite type, has finite length.

The function x(M,n) = é; (Mn) is called the Hilbert characteristic
o]

function of M. If O—M!'—» M —M'—>0 1is an exact sequence of

graded H-modules of finite type, then, by (4.2),

x{M,n) = x(M',n) + x{(M",n).

Theorem (4.11) (Hilbert). - Let H be a graded ring satis-
fying:
(a) H, is an artinian ring.

(b) H 1is an Ho—algebra generated by Ryseos

,xre Hi'
Let M be a graded H-module of finite type. Then there exists a
polynomial Q(M,n) of degree <r-1 such that x(M,n) = Q(M,n) for

large integexrs n.

Proof. The proof proceeds by induction on r. If r = O, then

HO and, by (4.8), M is an H-module of finite length. Therefore,

H=
Mn= O for large n and Q{M,n) = O.
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Assume the assertion holds for r-1 and let M be a graded

Ho[xi,...,xr]—module of finite type. The exact sequence

X
r
° Nn Mn Mn+1 Rn+1 °

yields Ax(M,n) = x(M,n+1)-x(M,n)=x(R,n+1)-x(N,n). Now, N and R are
graded Ho[xl,...,xr_il—modules since xr annihilates them. There-
fore, by induction, Ax(M,n) coincides for all large n with poly-
nomial Q(R,n+1) - Q(N,n) of degree < r-2. Therefore, the assertion

follows from (4.10).

Lemma (4.12}. - Let A be a noetherian ring, M a finite
A-module, g an ideal of A and (Mn) a g-good filtration of M.
If M/gM has finite length, then M/Mn has finite length for all

integers n > 0.

Proof. By (2.6), Supp(M/q"M) = Supp(M) n V(qn) = Supp (M/qM) ;
so, by (4.3}, M/an has finite length. Since Mo an for all

n >0, it follows that M/Mn has finite length.

Theorem (4.13) (Samuel). - Let A be a noetherian ring, M a

finite A-module and g an ideal of A such that M/qM has finite
length. Let (Mn) be a g-good filtration of M.

(1) There exists a unique polynomial P such that P

(m)
(Mn) (Mn)

= E(M/Mm) for large m; furthermore, P(M ) depends only on
n
gr(M).
(ii) If g can be generated by r elements, then deg(P(M )) < r.
n

(iii) The degree and leading coefficient of P( are independent

Mn)
of the choice of filtration.
Proof. Let I be the annihilator of M, B = A/I and

p = (q+I)/I. Filter B p-adically and let H = gr(B). By (2.6) and

(4.7), B/p is artinian and since p is finitely generated, H satis-
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fies (a) and (b) of (4.11). Moreover, since (Mn) is g-good, gr{M)

is a finite gr(B)-module by (1.12).

Hence, by (4.11), there exists a polynomial Q(gr(M),n) which
coincides with x{gr(M),n) for large n. On the other hand,
A4@(M/"!'In) = E(M/Mm_i) - E(M/Mn) = x(gr(M) ,n}; hence, it follows from

(4.10) that there exists a polynomial Py (n) which coincides with
n

,E(M/Mn) for large n.

Since APM {(n) has degree <r-1, PM {n) has degree <r by (4.10).
n n

To prove (iii), let n, be an integer such that M __,= qM,

for n=2n Then for n large, we have

0°

n+n0 n n
q M< Mn+n0= q Mnoc gMc Mn'

Hence, for large n,
P 4n ) > + > z J
(™M) (n no) P(Mm) (n no) P(qu) (n) P(Mm) (n)
and the proof is complete.

Definition (4.14) - The polynomial P(qu) is called the

Hilbert-Samuel polynomial and is usually denoted Pq(M,n) .

Lemma (4.15). -~ Let A be a noetherian ring, g an ideal of
A and O0—M! —>M —>M"—3 0 an exact sequence of A-modules of
finite type. If M/gM has finite length, then M!'/gM! and M"/gM"
have finite length and the polynomial Pq(M,n) - Pq(M“,n) - Pq(M' ,n)

has degree < deg (Pq(M' ,n)) -1,
Proof. The filtration (Mr’u) = (M' N an) of M' is g-good by
the Artin-Rees lemma {1.14). Since, by (4.2},
2M/g™M) = M /gM) + Lmt/mt )

the conclusion follows from (4.13,(iii)).



Chapter III - Depth and Dimension
1. Dimension theory in noetherian rings

Remark (1.1) . ~ Let X be a topological space. The dimension
of X, denoted dim(X), is defined as the supremum of all integers r

such that there exists a chain of closed irreducible subsets

= ) pJ J,
X XO#Xiﬁ"';‘Xr'

If A is a ring, the dimension of X = Spec(A) is called the (Krull)
dimension of A and is denoted dim(A}. Let M be an A-module and
I the annihilator of M. The dimension of M, denoted dim(M), is
defined as the dimension of the ring A/I; M 1is said to be egui-
dimensional if dim(M} = dim(A/p) for all minimal essential primes P
of I. If p 1is a prime, then the height of p is defined as the
dimension of Ap. If A is noetherian and M is a finite A-module,
then, by (II, 2.5), dim(M) = dim(Supp(M))s by (II,3.10), dim(Supp(M))
is equal to the supremum of the integers dim(A/p) as p ranges

over Ass(M) (resp. Supp(M)).

Remark (1.2). -~ Let A be a semilocal noetherian ring. An

ideal g of A is said to be an ideal of definition of A 1if the

following two conditions hold:
{a) g ¢ rad(a).
{r} A/g 1is an artinian ring
If g' > g 1is another ideal of definition, then, by (II,4.7), q'm < g

for some integer m.

Let A be a semilocal noetherian ring, g an ideal of defini-

tion of A and M a finite A-module. The, by (II,4.8), M/gM has
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finite length. Furthermore, it is clear that if g' ¢ g is another
ideal of definition, then Pq,(M,n) < Pq(M,n) and Pq(M,n) < Pq,(M,mn)
(I1,4.13). Therefore, the degree d(M) of Pq(M,n) is independent

of qg.

Let s{(M) be the smallest integer «r such that there exist

KysenerX € rad(A) with M/(le + ...+ er) of finite length.

Lemma (1.3). - Let A be a semilocal noetherian ring and M
a finite A-module. Let x ¢ rad{(A) and let xM be the kernel of the
homothety M —=% .M. Then
(i)  s(M) < s(M/xM) + 1.
(ii) Let {pi} be the primes of Supp(M) such that dim(A/pi) = dim(A).
If x £ Up,;, then dim (M/xM) <€ dim(M)-1.
(iii) If g 1is an ideal of definition of A, then the polynomial

Pq(xM) - Pq(M/xM) has degree < 4(M)-1.

Proof. Assertions (i) and (ii) are trivial. To prove (iii),
apply (II1,4.15) to the exact sequences

(o] -—>XM —>M —>xM —0

Q0 —» XM —>M —>» M/xM —> 0.

Theorem (1.4). - Let A be a semilocal noetherian ring and M

a finite A-module. Then
dim{(M) = d(M) = s(M).
Proof. Step I. dim(M) < d(M).

If &(M) = 0, then M has finite length and, by (I1I,4.3) and

{(1.1) dim(M) = 0.

Suppose d(M) = 1 and Pot Ass (M) is such that dim(A/po) = dim (M) .

Then M contains a submodule N isomorphic to A/po and, by
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(11,4.2), d4a(N) € d(M). Thus, it suffices to prove Step I for M = A/p,-

[« 4 i =
Let Py Z e ; P, be a chain of primes of A, If n o,
then clearly n £ d(M). If n > 0, choose Xx ¢ Py N rad (A), but
x ¢ Po- The chain Py ; cee ; P, belongs to Supp (M/xM) ; so,
n-1 £ dim{(M/xM). However, XM =03 by (1.3), d4(M/xM) < 4(M)-1.

Hence, Step I follows by induction on d(M).

Step II. d{M) < s(m).

Let I = X,A+---+X,A be such that I ¢ rad{A) and M/IM has
finite length. If q = I + (rad{(A) n Ann(M)), then q is an ideal
of definition of A. 1Indeed, g ¢ rad{(A) and Vi{g} =
= V(1) n {v(rad(A)) U Supp(M)) consists entirely of maximal ideals.
Furthermore, by (II,4.13), Pq(M,n) = PI(M,n) since I™M = an for
all n. Again, by (II1,4.13), PI(M,n) has degree < r. Therefore,

a(M) < s(M).

Step TII. s(M) < dim(M).
The proof proceeds by induction on n = dim(M), which is finite

by Step I. If n = 0, M has finite length by (1I1,4.3).

Suppose n = 1 and let {pi} be the primes of Supp(M) such
that dim(A/pi) = n. They are not maximal since n > 1; hence, by the
following lemma, there exists x € rad{(A) such that x ¢ p; for all
i. By (1.3}, s(M) £ s(M/xM) + 1 and dim{M) > dim{M/xM) + 1. By

induction, s(M/xM) < dim(M/xM); so s(M) < dim(M).

Lemma (1.5). - Let A be a ring and E a subset of A which
is stable under addition and multiplication; let {pi}}.]=1 be a
nonempty family of ideals of A such that Pyr-.- Py are prime. If

E cU P;» then E ¢ Py for some 1.
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Proof. The assertion is trivial for h =1, so assume h > 1.

Since E = U(Eﬂpi), we may suppose by induction on h that there is
no index j such that E n pjc igj p;. For each j, choose an element

x. € EN p. such that x. . for i j. Then = + . x.€ E

j Py ; £ Py #13 Y = x+ b x¢E,

but y ¢ P; for any 1i.

Corollary (1.6). - Let A be a semilocal noetherian ring and

M a finite A-module. Then, for each x € rad(a),
dim (M/xM) = dim(M} - 1,

with equality if x £ p where p runs through the primes of Supp(M)

such that dim{(M) = dim{A/p).

Proof. By (1.3), s{M/xM) = s(M) - 1; hence, the assertion

follows from (1.4).

Corollar 1.7). - Let ¢ :+ A—>B be a local homomorphism of

noetherian rings, m the maximal ideal of A and k = A/m. Then

dim(B) < dim(A) + dim(B@kk).

Proof. Let d = dim(A) and let I be an ideal generated by
d elements of m such that A/I has finite length. By (II,4.5),
A/I is artinians so, by (I1,4.7), m/I 1is nilpotent. Hence, mB/IB
is nilpotent and, thus, dim(B@hk) = dim{(B/IB}. By (1.6},

dim(B/IB} 2 dim(B) - d; whence, the assertion.

Corollar 1.8). - Let A be a semilocal noetherian ring and

M a finite A-module. Then dimA(M) = dimg(ﬂ).

Proof. By (II,1.19) and (II,4.13), d4d(M) = d(ﬁ); hence, the

assertion follows from (1.4).
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Corollar 1.9). - Let A be a noetherian ring, p a prime of
A and n integer. The following conditions are equivalent:
(i) ht(p) < n.
(ii) There exists an ideal I of A generated by n elements such

that p 1is a minimal (essential) prime of 1I.

Proof. If (ii) holds, IAp is an ideal of definition of Ap.
Hence, ht(p) = dim(Ap) = s(Ap} < n., Conversely, if (i) holds, there
exists an ideal of definition of Ap generated by n elements

*i yhere s € A - p. It follows by (II,3.9) that p is a minimal

s
prime of I = x,A+.«-+xXpA.

Remark (1.10). -~ With n = 1, (1.9) is known as Krull's

principal ideal theorem.
2. Dimension theory in algebras of finite type over a field.

Lemma (2.1). - Let A,B be domains and suppose B is integral

over A. Then B is a field if and only if A is a field.

Proof. Suppose B is a field and let a be a nonzero element
of A. Since 1/a ¢ B, it satisfies an eguation
(1/a)n + an_i(l/a)ﬁ-1 + a.. + a,= 0 with a; € A. Then 1/a =
n-1

= —(an_1+ aa, _, + ... +a ao) and, consequently, 1/a ¢ A.

Conversely, suppose A 1is a field and let b be a nonzero ele-

ment of B. Then b satisfies an equation b + aﬂ_lbn_1 +...+2a,=0
. n-2
with a, € A and aj # 0. Hence, 1/b = -((a,/a )+...+(a _,/a))b "+
+ (1/a)v" ") e B.
Proposition (2.2) (Cohen-Seidenberg). - Let A be a subring of

B and p a prime of A. Suppose B 1is integral over A.
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(i) If P is a prime of B 1lying over p, then P is maximal if
and only if p is maximal.

(ii) If P' > P are primes of B lying over p, then P = P!,

(iii) If p is any prime of A, there exists a prime P of B
lying over p.

Proof. Assertion (i) follows from (2.1) applied to A/p and

B/P. To prove {ii) and (iii), replace A by S-iA and B by S-iB

where S = A - p; then, A is local with maximal ideal p. Now, (i)
implies (ii) and that, if P is any maximal ideal of B, then

p = P N A, completing the proof.

Lemma (2.3). -~ Let A be a domain integrally closed in its
quotient field K. Let L be a finite normal extension of K, B the
integral closure of A in L, G the group of K-automorphisms of L
and p a prime of A. Then G operates transitively on the primes

of B 1lying over p.

Proof. Let P, P' be primes of B 1lying over p. If g € G,

the prime gP 1lies over p and, by (2.2), it suffices to show that
P' ¢ gP for some g € G. Let b ¢ P' and let a = Ig(b). Then
a9 € X where g 1is a power of the characteristic of K. Since A

9 ¢ A and thus a¥ ¢ p- Hence, there exists

is integrally closed, a
an automorphism g such that g(b) € P, and b € g-lP. Hence,

P' ¢ UgP; so, by (1.5), P' ¢ gP for some g.

Propogition (2.4) (Cohen-Seidenberg). - Let B be a domain,

A a subdomain of B, p ; p' primes of A, and P' a prime of B
lying over p!'. Suppose A 1is integrally closed and B 1is a finite

A-module. Then there exists a prime P ; P' 1lying over p.
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Proof. Let K be the quotient field of A, L a finite normal
extension of K containing B, and C the integral closure of A in
L. By (2.2), there exist a prime Q' of C lying over P' and a chain
Q ; Q" of primes of C lying over p ; p'. By (2.3), there exists
a K-automorphism g of L such that gQ" = Q'. If P = gQnB, then

P is the required prime.

Theorem (2.5). (Noether normalization lemma). - Let k be a

field, A a k-algebra of finite type and I,¢ ... ¢ I_ a sequence of

1
ideals of A with Ir# A. Then there exist elements tl""’tn of

A, algebraically independent over k, such that:
(a) A is integral over B = k[tl""’tn]‘
{b) For each i, 1 £ i € r, there exists an integer h(i) =2 O

such that Iin B 1is generated by {ti""’th(i)}‘

Proof. A is a quotient of a polynomial algebra At = k[Tl""Tm]
and clearly we may assume A = A'. The proof proceeds by induction

on r.

Step I. Suppose r =1 and I, is a principal ideal generated

by a nonzero element ¢t By assumption, t1= P(Tl,...,Tm) £ k where

.-
P = Xa(j)T(J} € k[Tl,...,Tm}. We are going to choose positive

integers s; such that A is integral over B = k[ti”"’tm] where

S,
1

1

T1 is integral over B.

ti= Ti— T, , 2< i<m. To do this, it will suffice to show that

Now T, satisfies the equation

J s J
72 . (e + Tlm) ™ = o.

3y s
t1'Za(j)T1 (Ep* Ty

Let f£(j) = j1+ szj2+...+ smjm. 1f s; = El where ,Z is an integer

greater than deg(P), then the £(j) are distinct. Suppose £(j')
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is largest among the £(j). Then the above equation may be written

£(3) S v
a T + / Qv(t)‘I‘1 and, hence, T

B is integral over B.
(3vy 1 vef(i')

i

Clearly, ti”"’tm are algebraically independent. Suppose
X € Ilﬂ B. Then x = tix' where x' € A N k(tl,...,tm). Further-
more, A N k(ti""'tm) = B since B is integrally closed. Hence

Ilﬂ B = tiB and the proof of Step I is complete.

Step II. Suppose r =1 and I1 is arbitrary. The proof

proceeds by induction on m. The case m = 0 is trivial. We may

assume 11 # 0. Let t1 be a nonzero element of 11' Then t1 £k

because I1 # A. By Step I, there exist elements Uyseeesly such
that t,, Uyseeesu  are algebraically independent and satisfy (a)

and {b) with respect to A and (tl)' By induction, there exist

algebraically independent elements tz,...,tm satisfying (a) and (b)
with respect to k[uz,...,um] and I N k[u2,...,um]. Then ti"”’tm
are algebraically independent and satisfy (a) and (b) with respect

to A and Il'

Step III. Assume the theorem holds for r-1. Let ui,...,um

be algebraically independent elements of A satisfying (a) and (b)

for the sequence Ilc eeaC Ir_1 and let s = h(r-1). By Step II,

there exist algebraically independent elements satis-

ts+1""’tm

fying {a) and (b) for k[us+1,...,um] and Irn k[us+1,...,um].

I1f we set ti =uy for i< s, then ti"“’tm are algebraically

independent and satisfy (a) and (b) for I,¢ ...cI.

Theorem (2.6). - Let A be a domain of finite type over a

field k.
(1) If p, ; e ; p, 1is a saturated chain of primes of A, then
r 1is equal to tr.degkA, (the transcendence degree of A

over k).
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(ii) tr.degkA = dim(A)

(iii) If p is any prime of A, then dim(Ap) + dim{(a/p) = dim(A)

Proof. Assertion (i) implies (ii) directly, (iii) by applica-

tion to chains through p. To prove (i), by (2.5), choose algebra-

ically independent elements tl,...,tne A such that A is integral
= ‘z = .

over B k[tl,...,tn} and p;= p;N B (ti""’th(i)) Then

n = tr.degkA and, by (2.2), r € n; since the chain is saturated,

h(r) = n by (2.2) and h(i+1l) = h(i)+1 by (2.4) applied to A/pi

and B/Pi = k[t It follows that r = h{r) = n.

h(iy+1’- - tpl-

Corollarv (2.7) (Hilbert Nullstellensatz). - Let A be an

algebra of finite type over a field k and m a maximal ideal of A.

Then the field A/m is algebraic over k.

Proposition (2.8). - Let k be a field and X an algebraic

k-scheme. Then:
(i) A point x € X is closed if and only if k{x) is a finite
extension of k.

(ii) The closed points of X are dense.

Proof. Since a point x is closed if and only if x is closed

in every affine open subset containing x, it follows that we may
assume X 1is affine. Let A be the ring of X, m the ideal of x
in A. Then X 1is closed if and only if m is maximal. However, by
the Hilbert Nullstellensatz (2.7}, m 1is maximal if and only if

A/m is a finite field extension of k.

3. Depth

Definition (3.1). - Let A be a ring and M an A-module. Let

(xl,...,xr) be a sequence of elements of A and Mi =
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= M/(x1M + ...+ xiM). Then (Xl""’xr) is said to be M-reqular

if the sequences

X.
0 M, it o,
1 1

are exact for 0 < i < r-1.

Lemma (3.2). - Let A be a ring and M an A-module. Let X
be an element of A, J an ideal of A and I = J + xA. If x is

gr}(M)—regular,then the surjection defined by Tt—x,

¢ & gri(M)®, (A/xA) [T]—gr] (M),

is an isomorphism. Conversely, if M/JM is separated for the I-adic

topology and ¢ is an isomorphism, then x is (M/JM)-regular.

Proof. Assume Xx is gr}(M)—regular. Let Py =

= (gr}(M)@}_\(A/xA)[T])k and Q.= gr?(M), and filter them by
() = 5 B; 9Ty S0, (a/xA)T) and (g); = o((B);). Then, by

{11,1.5), to prove ¢ _ injective, it suffices to prove

k
) . i i - . . . -
wk,i' gr (Pk)—-—agr (Qk) injective for each i since (Pk)k+1 0.
However, grl(Pk) = (JLM/(XJ1M+J1+1M)}Tk-l and (Qk)i+1 is the

- —4-1 i+
image of R .= Fmased I + ...+ B a0 MM, Hence,

; ; . i ~1 k+
it remains to show that, if y ¢ JlM and xk 1y € Rk+ I 1M, then

v € xiurttiy,

By (I1,1.5), x is (M/JhM)—regular for any h > O. Set

h =i + 13 since xk_ly € Jl+1M+Ik+1M 4 Jl+
i+l . . i
z & M such that y - xz € J M. Set h = i; since v ¢ I M and

1M+xk~l+1M, there exists

. ) . . i+
Xz € JlM, it follows that =z € JlM. Hence, y € leM + gt 1M and

¢ is injective.

Conversely, let o¢{t ® Tk—i) € grt-i(M/JM) where & € M/JM.

k-1

*
Suppose ng(x)(¢(§ ®T )) = ¢9{E ® Tk) is zero. Then ¢ = 0, s0

by (I1,1.5), x is (M/JM)-regular.
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Definition (3.3). - Let A be a ring and M and A-module. 2
sequence (Xi""’xr) of elements of A is said to be M-quasi-

reqular if the canonical surjection
P *
‘Pr- (M/IM) [Tlr-ov ’Tr]_)ng(M) »
where I = xiA + ... + xrA, is an isomorphism.

Theorem_ (3.4). - Let A be a ring and M an A-module. Then

an M-regular sequence (xl,...,xr) is M-quasi-regular. Conversely,
if (xl,...,xr) is M~gquasi-regular and if M,

M/xiM,...,M/(le + ... +x M) are separated for the I-adic

r-1

topology where I = XiA + ... + xrA, then (Xl""’xr) is M-regular.

Proof. Assume (xl,...,xr) is M-regular. If r = O, the
assertion is trivial. Proceeding by induction, assume
} . * . . .
P4t (M/JM)[Ti,...,Tr“il———ang(M) is an isomorphism where
J=xA+ ...+ Xr—iA' Then, since x, is (M/JM) -reqular, x,  is

*

- . * *

ng(M) regular. So, by (3.2), ¢ : ng(M) ® A(A/xrA)[Tr]—-—--avng(M)

is an isomorphismj; therefore, =@ ° (wr_1® id) is an isomorphism

and (xi,...,xr) is M-guasi-regular.

Conversely, assume ?, is an isomorphism. If r = O, the

assertion is trivial. If r > O, then P = @ o (mr_1® id) and Proq

is surjective; so, ¢ is an isomorphism. Hence, by (3.2), X, is

(M/JM) -regular. Furthermore, ¢ decomposes into surjections

Pr

(M/IM)[Tl,...,Tr} gr;(M)
[ /

- *
W 9r {9y _4)
gri(m/am (e, ,...,T _ 1) >grylgri(m).
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Thus, gré(@r_i) is injective; hence, since M/JM is separated,

®_q is injective by (I1,1.5). Therefore (xl,...,x ) is M-quasi-

r-1

regular. Since J ¢ I, by induction (xl,...,x } is M-regular;

r-1
so, the proof is complete.

Corcllary (3.5}. - Let A be a noetherian ring and M a finite
A-module. Then elements XyseeesX € rad(A) are M-regular if and
only if they are M-guasi-regular. 1In particular, M-regularity does

not depend on the order.

Proof. The assertion follows immediately from (II,1.15) and (3.4)

Lemma (3.6). - Let A be a ring and N a finite A~-module.
For each p € Supp(¥), there exists a nonzero A-homomorphism

¢ : N—>A/p.

Proof. For p ¢ Supp(N), Np/pr is a nonzero vector space
over K, the quotient field of A/p. Hence, there exists a nonzero
map o' : Np/pr“——*K. If Yyreees¥y generate N/pN as an
A/p-module, there exists s ¢ A-p such that s¢'(y1) ¢ Afp for all
i. Hence, s¢' is nonzero and maps N/pN into A/p. Take ¢ to be

the composition
s¢t
N —N/pN ——A/p.

Lemma (3.7).~ Let A be a noetherian ring, I an ideal of A
and M a finite A-wmiodule. Then the following conditions are equi-
valent:

(i) Ass{M) N V(I) = ¢&
(ii) There exists x € I which is M-regular.
(iii) Hom(N,M) = O for all finite A-modules N such that

Supp(N) ¢ v(I1).
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{iv) Hom(N,M) = O for some finite A-module N such that

Supp(N) = V{(I1).

Proof. Assume (i) holds. If p ¢ Ass(M), then I £ p. By
(1x,3.7), Ass(M) is finite; hence by (1.5), there exists x ¢ I
such that x gUp where p runs through Ass{M). By (II,3.4), x

is M-regular and (ii) holds.

To prove (iii)==(iv), take N = A/I

We prove (iv)==>(i) by contradiction. Let p ¢ Ass(M) n V(I).
Then, by (3.6), there exists a nonzero map ¢ : N——>A/p; the
composition of ¢ with the injection A/p —M, (II,3.2), is a non-

zero map N-—M.

The implication (ii) ===3(iii) 1is the case r = 1 in the

implication (iv) == (i) below.

Proposition (3.8). - Let A be a noetherian ring, I an ideal
of A, and M a finite A-module. For any integer r, the following
conditions are equivalent:

(i) Extg(N,M) =0 for all g < r and all finite A-modules N

such that Supp(N) ¢ V(I).

(ii) Extg(N,M) =0 for all g < r and some finite A-module N

such that Supp(N} = V{(I).

(iii) Given Xyseoe X € I such that (xl,...,xn) is M~regular,
there exist Xopqreeoo¥ € I such that (xl,...,xr) is

M-regular.

{iv) There exists an M-regular sequence (Xi""’xr) with all X € I.

Proof. To prove (i)==>(ii), take N = A/I
Assume (il), For r = 0, (iii) is trivial. Assume r = 1 and

that xi,...,xne I are such that (xi,...,xn) is M-regular., If
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n = 0, use {(iv)=(ii) of (3.7) to construct X3 hence, we may
x
assume n 2 1, 1If M1= M/le, the sequence 0 —>M ——éﬂ'M-—ﬁMi-ﬁ'O

is exact and yields an exact sequence

q q q+1
ExtA(N,M)--—>ExtA(N,M1) —> Ext, (N,M) .

Thus, (ii) implies that Extg(N,Mi) =0 for g < r-i. Further-

more, (xz,...,xn) is Mi—regular. Hence, by induction, there exist

xn+1,...,xr€ I such that (xz,...,xr) is N&~regular. Then

(xl,...,xr) is an M~regular sequence.

The implication (iii)==>(iv) is trivial.
Assume {(iv) and let N be a finite A-module such that

Supp (N} ¢ V(I). Then (i) holds trivially for r = O. Assume r 2z 1.

x
Then the sequence O-—-éM-—ieM -6M1-e-o is exact and yields the

exact seequence
o+
ExtT(N,M,) —> Extg T, s Extg+1(N,M) .

By induction, Extg(N,Ml) =0 for g< r-1, so u 1is injective.

However, u is induced by multiplication by x, on M, but
may be regarded as induced by multiplication by x, on N. Now,

xié I and Supp(N) ¢ Vv(I); hence, by (I11,2.8), X2 N —>N is nil~

. . L . +
potent. Thus, u is a nilpotent injection. Therefore, Ext§ 1(N,M)=0.

Definition (3.9). -~ Let A be a noetherian ring, I an ideal
of A and M a finite A-module, The depth of M with respect to
I, denoted depthI(M), is defined as the supremum of all integers «r
such that there exists an M-regular seguence (xl,...,x ) of

r

elements xie I.

Corollary (3.10). - Let A be a noetherian ring, I an ideal
of A, M a finite A~-module and x an M-regular element of I. Then

depthI(M/xM) = depthI(M)—l.
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Remark (3.11). - Let A be a noetherian local ring, m the
maximal ideal and M a finite A-module. 1In place of "depthm(M)",
we usually write "depthA(M)“ or simply "depth(M)". By (3.7),

depth(M) = O if and only if m € Ass(M).

Definition (3.12). - Let P be a locally noetherian scheme,

X a closed suscheme of P and F a coherent OP-Module. Then the
depth of F with respect to X, denoted depthx(F) is the infimum

of the integers deptho (Fx) as x runs through X.
X

Proposition (3.13). - Let P be a locally noetherian scheme,
X a closed subscheme of P and F a coherent OP-Module. Then the
following conditions are equivalent:

(i) Extd (G,F) = 0 for all g < r and all coherent O_-Modules
‘_‘OP P

G with Supp(G) ¢ X.

(ii) ExtJ (G,F) = 0 for all g < r and some coherent O_-Module
———OP P
G with Supp(G) = X.

(iii) DepthX(F) Zr.

(iv) Depth(Fx) 2 r for all x € X.

F_)

Proof. It follows from (IV,3.2), that Extg (6,F) = Extd (G, F,

P OP,x

Therefore, the equivalences follow from the definitions and (3.8).

Corollary (3.14). - Let P be a noetherian affine scheme with

ring A, X = V(I) a closed subscheme and F a coherent OP-Module

with TI'(P,F) = M. Then depthx(F) = depth_ (M) .

Proof. Since, by (1v,3.2), Ext? (G,F) is quasi-coherent,
P

(3.14) follows from (3.13) and (3.8).

Proposition (3.15). - Let A be a noetherian local ring and

M a finite A-module. Then depth(M)S< the infimum of dim(A/p) as
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p runs through Ass{(M). Furthermore, depth(M) is infinite if and

only if M = 0. 1In particular, depth(M) < dim{(M) if M # O.

Proof. We prove by induction on r that if r < depth(M),
then r € dim(A/p) for any p € Ass(M). If O < r < depth(M), then
there exists an M-regular element X € m. Let M' = M/xM. Then the
sequence O —>M X LM-—M'—0 is exact. By (3.10),

r-1 < depth(M'); so, by induction, r-1 < dim(A/p') for any p' in
Ass(M'). It now suffices to show that for each p € Ass(M), there
exists p' € Ass(M') N V(p + xA). For, since x £ p, dim(a/p) 2

dim(A/p') + 1 > r.

By (3.7), it suffices to show that Hom(a/p + xA,M') # O.
However, Hom(A/p + xA,M') = Hom(A/p,M'), and the sequence
0 —> Hom (a/p ,M) —= > Hom(A/p,M) —> Hom (A/p,M")

is exact, its first two terms are nonzero since p ¢ Ass(M). Since

X € m, Nakayama's lemma implies that Hom(A/p,M')# O

If M = 0, then clearly any sequence is M-regular and depth(M)
is infinite. The converse now follows from (1.4) and (II,3.3). The
last statement is clear, since dim(M) is the supremum of dim(a/p)

as p runs through Ass(M), (1.1).

Proposition (3.16). - Let A,B be noetherian local rings,

¢ : A—>»B a local homomorphism and M a B-module which is of

finite type over A. Then depthA(M) = depthB(M).

Proof. Let m be the maximal ideal of A and let
xl,...,xre m form an M-regular sequence. Trivially, ¢(x1),...,¢(xr)
form an M-regular sequence in B. Let N = M/(xiM + ...+ er); by
(3.10), depthB(N) = depthB(M)—r and depthA(N) = depthA(M)—r. it

follows that we may assume depthA(M) = 0.
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Let P = HomA(A/m,M). Then P is a B-submodule of
HomA(A,M) =M and, by (3.11), P # 0. Since xP =0 for all x € m,
it follows that {m} = AssA(P). Since M 1is a finite A-module,

(II,4.3) implies that P has finite A-length; a fortiori, P has

finite B-length, so (II,4.3) implies that AssB(P) consists precisely
of the maximal ideal of B. Since AssB(P) < AssB(M), (3.11) implies

that depthB(M) = 0,
4. Cohen-Macaulay modules and reqular local rings.

Definition (4.1). - Let A be a noetherian local ring. A
finite A-module M is said to be Cohen-Macaulay if depth(M) = dim(M).

The ring A is said to be Cohen-Macaulay if it is a Cohen-Macaulay

A-module.

Example (4.2). - A noetherian local domain of dimension 1 is
Cohen~Macaulay. By Serre's criterion (VII,2.13), a normal noetherian

local domain of dimension 2 is Cohen~Macaulay.

Proposition {(4.3) (Cohen-Macaulay}. - Let A be a noetherian

local ring and M a finite A-module. Suppose M is Cohen-Macaulay.
Then
(i) M is equidimensional and without embedded primes.
(ii) Let =x be an element of the maximal ideal such that
dim(M/xM) = dim(M)-1. Then x is M-regular and M/xM

is Cohen-Macaulay.

Proof. By (3.15), depth(M) £ inf{dim(A/p)|p ¢ Ass(M)} and by
(1.1), dim(M) = sup{dim(A/p)|p ¢ Ass(M)}; hence, (i) follows from
{1.1) . Assertion (ii) results from (i) together with (II,3.4), (1.6)

and (3.10).



- 85 -

Definition (4.4). - Let B be a noetherian ring, I an ideal

of B and A = B/I. Then A is said to be regularly immersed in B
if I is generated by a B-regular sequence; more weakly, A is said
to be a complete intersection in B if I is generated by

r = dim(B) - dim(A) elements.

Corollary (4.5). - Let B be a Cohen-Macaulay local ring, I

an ideal of B and A = B/I. If A is a complete intersection in

B, then A is reqularly immersed in B, and A is Cohen-Macaulay.

Definition (4.6). - Let A be a noetherian local ring, m the

maximal ideal and r = dim(A). Then A is said to be xzeqular if m
is generated by r elements. Elements of m whose residue classes

are linearly independent in m/m2 are called reqular parameters.

Proposition (4.7). - Let A Dbe a noetherian local ring, m

the maximal ideal, X = A/m and r = dim(A). Then:
(i) Elements of m generate if and only if their residue classes

generate the k-vector space m/mz.

(ii) dim(a) < dimk(m/mz), with equality if and only if A is regular.

Proof. Part (i) results immediately from Nakayama's lemma. By

(1.9), dim(A) £ s, the number of elements in a minimal set of

generators of m; by (i), s = dimk(m/mz), whence (ii).

Proposition (4.8). - Let A Dbe a noetherian local ring, m the
maximal ideal, k = A/m and XyseeerX €M where r = dim(A). Then
the following conditions are equivalent:
(i) The graded map k[Ti,...,Tr]———agr;(A) defined by T X, mod m2
is an isomorphism.

(ii) yseeenX, generate m.
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Proof. By (4.7), (i) implies (ii). Assume (ii) and let
s = k[Ti,...,Tr] and G = gr;(A). Consider the exact seguence

00— —8§ —G —>»0. Now for all positive integers s,

s+r-1

dlmk(Is) + dlmk(Gs) = dimk(ss) (",_4). Suppose I # O. Then for

some positive integer h, there exists a nonzero homogeneous element

wer and I_>us ¥ S_,. Therefore, for all s > h,
dim (1)) > dim (s__) = (PN mence, dim, (6 < £(s) =
= (s:fgl) - (s;?Ir—i)‘ However, f(s) is clearly a polynomial of

degree < r-2 = dim(aA) - 2, contradicting (1.4) (cf.II,4.13);

therefore,(i) holds.

Proposition (4.9). - A regular local ring A is a domain.

Proof. Let m be the maximal ideal. By (4.8), gr;(A) is a

domain and, by (II,1.15), N m" = 0. It follows from (II,1.5) that A

is a domain.

Proposition (4.10). - Let A be a noetherian local ring, I
an ideal of A and r = dim(A). Then the following conditions are
equivalent:

(1) A is regular and I is generated by s regular parameters.

(ii) B = A/I is regular of dimension r-s and 1 is generated by
s elements.

(iii} A 1is regular and B is regular of dimension r-s.

Furthermore, if these conditions hold, I 1is prime and any s

generators are regular parameters.

Proof. Let m be the maximal ideal of A, m' = m/I and

k = A/m. Then the sequence
2 2 2 2
Q0 ~{m” + I})/m" " — m/Mm —sm'/m'"— 0

is exact. Assume (i). Then dimk((m2 + I)/hz) = s and
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dimk(m/mz) =r, so dimk(m'/m'z) = r-s. On the other hand, by (4.7),
dim (m'/m'?) > dim(B) and by (1.6), @im(B) > r-s; so, dim(B) = r-s

and B 1is regular, proving (ii) and (iii).

Assume (ii). Since dimk(m'/m'z) = r-s and dimk(m2+1)/m2) < s,

2 .
dimk(m/m ) € r. Hence, by (4.7), dimk(m/mz) =r and A 1is regular.

Thus, (iii) holds.

Assume (iii). Then the above exact sequence implies that
dimk((m2 + 1)/m2> = s, Hence, there exist regular parameters
Xy5---,X  among any set of generators of I. Let I' be the ideal
generated by XyseoerX e Then by (i)=3(ii), A/I' is regular of

dimension r-s. Thus I' ¢ I and by (4.9), they both are primes of

coheight r-s; hence I Iv.

Proposition (4.11). - Let A be a noetherian local ring, m

i

the maximal ideal and «r dim{(aA). Then A is regular if and only

if m is generated by an A-regular sequence. Moreover, if KyseeerXy,
are regular parameters of A, then the sequence (xl,...xr) is

A-regular.

Proof. For i = 0,...,r, let Ii be the ideal generated by
Xys.-.s%; ., Then, by {(4.10), A/Ii is regular; so, by (4.9), a domain.
Hence, X1 is not a zero~divisor in AfIi and the sequence

(xl,...,xr) is A-regular.

Conversely, suppose m is generated by an A-regular sequence
(xl,...,xs). By (3.15), s £ r and, by {(4.7), r < s. Hence, r = s

and A is regular.

Corollary (4.12). ~ A regular local ring is Cohen-Macaulay.
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Corollary (4.13}. - Let A, B be regular local rings. If A

is a gquotient of B, then A 1is regularly immersed (resp. a complete

intersection) in B.

5. Homological dimension

Definition (5.1). - Let A be a ring and M an A-module.

The projective dimension (resp. injective dimension) of M, denoted

proj.dimA(M) (resp. inj.dimA(M)), is defined as the infimum of all

integers n such that there exists an exact sequence

O-—~>Pn-—-—>... —->PO——>M —>0

with all Pi projective (resp. an exact sequence
O-«—bM-—a»QO——a ...——>Qn———>0

with all Qi injective).

Proposition (5.2). - Let A be a ring and M an A-module.

Then the following conditions are equivalent:
(i) proj.dim(M) £ n (resp. 1inj.dim(M) € n).
(ii) Ext;;(M,N) = 0 (resp. Exti(N,M) = 0) for all i >n and all
A-modules N.
n+l

(iiv) Ext, (M,N)

0 (resp. Ext§+1(N,M) = 0) for all A~-modules N.

(iii) In any exact sequence

O*—-}Rﬁ"—épn_l——% ...-——490———9M-——a0

with all Pi projective (resp.

—
0—M —>Q —>...—>Q R —>0

with all Q injective), R 1is projective (resp. injective).

Proof. The implications (i) => (ii) and (ii) = (ii') are

trivial. To prove the implication (ii')==(iii), note that

~ n+1

Exti(R,N) = Ext, (M,N) = 0 for all N; hence, R is projective.
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Assume (iii) and construct an exact sequence
O— R —P > ...—>P —> M —0
n-1 (o]
with all Pi projective. Then R is projective, so (i) holds. The

injectivity statements follow dually.

Lemma (5.3). - Let A be a ring and N an A-module. Then
inj.dim(N) £ n if and only if Extz+1(A/I,N) = 0 for all ideals I

of A.

Proof. Let

0O —N —>Q0—> e —)Qn_1—>R —>0

be an exact sequence with all Qi injective; by (5.2), it suffices
to show that R is injective. Now, for all ideals I,
1 ~ .
ExtA(A/I,R) = Ext2+1(A/I,N) = 03 it follows that Hom(A,R) —— Hom(I,R)

is surjective. Consequently, R is injective, ([2],I,3.2).

Definition (5.4). - Let A be a ring. The global homological

dimension of A, denoted gl.hd(A), is the supremum of the integers

proj.dim(M) as M runs through all A-modules.

Remark (5.5). - It follows from (5.2) that gl.hd(A) is the
supremum of all integers n for which there exist A-modules M, N such
that ExtX(M,N) # 03 hence, gl.hd(aA) is the supremum of the integers

inj.dim(N) as N runs through all A-modules.

Proposition (5.6) .- Let A be a ring. Let n be the supremum
of the integers proj.dim(M) as M runs through all finite A-modules.

Then n = gl.hd(a).

Proof. Clearly n < gl.hd(A). On the other hand, for all
A-modules N, Ext2+1(A/I,N) = 0 for any ideal 1I; so by (5.3),

inj.dim(N) € n.
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Proposition (5.7). - Let A be a noetherian local ring, k
the residue field and M a finite A-module. Let r Dbe an integer
satisfying the following conditions:

A

(1) Torr+1(M,k) =0

(ii) Tor‘:(m,k) £ o.
Then r 1is equal to proj.dim(M). Furthermore, if M #£ O and

r = proj.dim(M}, then (i) and (ii) hold.

Proof. (ii) implies that proj.dim{(M) = r. On the other hand,
consider an exact sequence

—_ ,.e =P —>M >0

Q ~—»R —>P
r 0

+1

with all P, projective of finite type. Since Tor?(R,k) =

Tori+1(M,k) = 0, the following lemma implies R 1is free.

Lemma (5.8). ~ Let A be a noetherian local ring, k the
residue field and R a finite A-module. Then the following conditions
are equivalent:

(i) R is free.
(ii) R 1is projective.
(iii) R is flat.

(iv) Tor?(R,k) = Q.

Proof. The implications (i)==>(ii), (ii)==(iii), and
(iii)==(iv) are trivial. Assume (iv) and let xl,...,xp be elements
of R whose images xi,...,x; form a basis of R@hk over k.
Construct the exact sequence

P g ko0

and consider the exact sequence

p (x') "
k R@%k —3R 8%*-—-90
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Since {x') is an isomorphism by construction, R"/mR" & R"@hk =0

and, hence, by Nakayama's lemma, R" = O.

Construct the exact sequence

(%)

0—sR' —»aP X 53 . 50

and consider the induced exact sequence

(x*)

A t P
Tory (R, k) —>R @Ak k R®Ak.
Since Tor?(R,k) = O by assumption and since (x') is an isomorphism Ly
construction,R'@kk = 0. Hence R' =0 and aP—R is an isomorphism.
Corollary (5.9). - Let A be a noetherian local ring and k

the residue field. Then gl.hd(A) = proj.dim(k).

Proof. The inequality gl.hd(ad) = q = proj.dim(k) is clear.
On the other hand, if g is finite, then, for all A-modules M of
finite type, Tor§+1(k,M) =03 so, q = proj.dim(M) by (5.7);

whence, by (5.6), q = gl.hd(a).

Proposition (5.10). - Let A be noetherian local ring, m the

maximal ideal and M a nonzero, finite A-module. Suppose X, em is

M-regular. Then proj.dim{M/xiM) = proj.dim(M) + 1.

Proof. Let M = M/le. The exact sequence

O—M > M >M o)

yields an exact sequence

x x
A 1 A A A 1 A
Torq(M,k)-————9Torq(M,k)——-aTorq(Ml,k)———?Torq_i(M,k)————>Torq_1(M,k)

where k = A/m. Since Xy €m, the first and last maps are zero.

Take ¢ = proj.dim{M} + 1. Then, by (5.7}, Torg(M,k) = 0 and

Torg_i(M,k) # 03 hence, Torg(ml,k) # O. Now,take g = proj.dim{M} + 2.
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A _ A A _
Then Torq(M,k) = 0 and Torq_l(M,k) 03 hence Torq(Mi,k) = 0.

Therefore, by (5.7), proj.dim(M) + 1

proj.dim(Ml).

Theorem (5.11) (Auslander-Buchsbaum). - Let A be a regular

local ring of dimension n. Then gl.hd(A) = n.

Proof. Let XyseeesX be a regular system of parameters of

A and k the residue field. Then, by (4.11), x

PERERREN is an
A-regular sequence and k = A/(x,Ad---.+-anJ. So, repeated application
of (5.10) yields proj.dim{k) = n + proj.dim(A) = n; hence, (5.9)

yields n = gl.hd(A).

Lemma (5.12). - Let A be a noetherian local ring and m the
maximal ideal. If every element of m - m2 is a zero~divisor, then

m € Ass(A).

Proof. We may assume m # O; whence, by Nakayama's lemma,

m # m2. By (I1,3.5), m - m2c hence, m ¢ (Up)u mz. By

peAgg(A)’

{(1.5), m ¢ p for some p € Ass(A) and, since m is maximal, m = p.
Lemma (5.13). -~ Let A be a noetherian local ring and m the

maximal ideal. If a € m - mz, then m/aA 1is isomorphic to a direct

summand of m/am.

Progf. Let I be an ideal of A such that a and I generate
complementary (A/m)-subspaces of m/hz. Then, by Nakayama's lemma,
I +aA =m. If xa € I, then its residue class in m/m2 is zero,
so x € m; hence, the natural map m/aA = I/ (I N aA) —s m/am is an
injection. It is split by the canonical surjection m/am —sm/aA

and thus m/ad is a direct summand of m/am.

Lemma (5.14). - Let A be a noetherian local ring, m the

maximal ideal and M a finite A-module. If a € m is A-regular
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and M-regular, then proj.dim )(M/aM) < proj.dimA(M).

(a/aa

Proof. Clearly we may assume h = proj.dimA(M) is finite. If
h = 0, then by (5.8), M is free and thus M/aM is a free (A/aA)-

module; hence, the inequality holds.

Suppose h Z 1. A surjection E = An—_—eM vields a commutative

diagram
0 > N E M 0
a la a

A
o] > N > E > M o]

]
N/aN——> E/aE >M/aM ——> 0

o] o] 0

By (5.2), proj.dim(N) = h-1. Furthermore, since a is A-regular, a
is E-regular; since a is also M-regular, multiplication by a is
injective in all three columns, so by the nine lemma, f is injective.

Hence by induction, proj.dim )(N/aN) € h - 1 and therefore

(A/an
proj.dim(A/aA)(M/aM) < h.

Theorem (5.15 Serre). - If a noetherian local ring A has

finite global homological dimension, then it is a regular local ring.

Proof. Let m be the maximal ideal of A, k = A/m and
r = rankk(m/mz). If r = 0, then by Nakayama's lemma, m = O and the

assertion is trivial.

Assume r 2 1. Then k is not projective and thus
g = gl.hd(a) =2 1. Suppose each element of m - m2 is a zero-divisor

in A. Then, by (5.12) m ¢ Ass(A) and there exists an exact
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sequence

i .
0 —k ~3>A —>coker (i} —> O3
it yields an exact sequence

0 —*Torg(k,k) —>0,
contradicting (5.7) and (5.9).

Therefore, there is an element a ¢ m - m2 which is not a
zero-divisor. Let A' = A/aA and m' = m/aA. Then rankk(m'/m'z) =
=r - 1. By hypothesis, proj.dimA(m) is finite; so, by (5.14),
proj.dimA,(m/am) is finite. Since by (5.13), m' is a direct
summand of m/am, it follows from (5.2) that proj.dimA,(m') is
finite. It follows from (5.9) that gl.hd{A') is finite and, by
induction, A' is regular of dimension r - 1. By (II,3.5) and

(1.3), dim(A') € dim(A) -~ 1 and thus dim(A) = r. Hence, by (4.7),

dim(A) = x and A 1is a regular local ring.

Proposition {(5.16). - Let A be a noetherian ring and M an
A-module. Then inj.dimA(M) = sup{inj.dimA(Mm)} where m runs
through all prime ideals (resp. maximal ideals) of A. In particular,
gl.hd(np) = sup{gl.hd(Am)}.

Proof. By (IV,3.2), we have Extg (A /1A M) = (Extg(A/I,M))m
for every prime m and ideal 1I. Sincz every ideal of A is of

the form IAm, the assertion follows from (II,3.3 and 3.10) and (5.3).

Definition (5.17). ~ A noetherian ring A is said to be
reqular if for each prime p of A, the local ring Ap is a regular

local ring.

Corollary (5.18). - Let A be a noetherian ring. Then the

following conditions are equivalent:
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(1) A is regular.
(ii) Am is a regular local ring for every maximal ideal m of A.

(iii) gl.hd(A) is finite.

Theorem (5.19). - Let A be a regular local ring and M a

nonzero, finite A-module. Then

depth(M) + proj.dim(M) = dim(A).

Proof. If depth(M) = 0, then, by (3.11), the maximal ideal m
is in Ass(M). Hence, there exists an exact sequence of the form

O —>k —M—>M'—> 0 and it yields an exact sequence
a . A A
Torq+1(M ,k)-—f>Torq(k,k)-——aTorq(M,k).

Let q = dim(aA). By (5.11), Tor2+1(M',k) = 0 and, by (5.7), (5.9)
and (5.11), Torg(k,k) # 0. Therefore, TorS(M,k) # 0, so

proj.dim(M) = g; however, q = gl.hd(aA), so g = proj.dim(M).

Assume r = depth(M) = 1. Then there exists x € m defining
an exact sequence

0—M-25M —>M, —>o0.

Since depth(Mi) = depth(M) - 1 by (3.10) and since proj.dim(Ml) =

= proj.dim(M) + 1 by (5.10), the assertion follows by induction.

Proposition (5.20). - Let A be a noetherian ring and M a

finite A-module. Then proj.dim(M) < r if (and only if)

Extz+1(M,N) = 0 for all finite A-modules N.

Proof. Consider two exact sequences

... P —>M —0

O~—-—¥R—>Pr__1 o

O—>N —»PJ;%R—-)O

with all P, projectives of finite type. Then Ext;(R,N) =
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= Ext£+1(M,N) = 03 so, HomA(R,Pr)———aﬂomA(R,R) is surjective. There-

fore, the second sequence splits and R is projective.

Proposition (5.21). - Let A be a regular local ring, M a

finite A-module and r an integer. Then proj.dim(M) < r if

(and only if) Extg(M,A) = 0 for all g > r.

Proof. By (5.20), it suffices to show that Extz+1(M,N) =0
for all finite A~-modules N. If r 2 gl.hd(a), then Ext§+1(M,N) =0
trivially and the proof proceeds by descending induction on r.
Consider an exact sequence O —P ——+AP‘——;N —30, It induces an
exact sequence

+
Extg(M,Ap) —_— Extg(M,N) SN Extg L(m,p).

Thus, for all g > r, Extg(M,Ap) = 0 by hypothesis and Extg+1(M,P) =

= 0 by induction; hence, Extg(M,N) = 0.

Corollary (5.22). - Let A be a regular local ring of dimension

s and B a quotient of A of dimension s - t. Then B is

Cohen-Macaulay if and only if Extg(B,A) =0 for all g> t.

Proof. By definition and (3.15), B is Cohen-Macaulay if and
only if dim(B) £ depth(B). However, by hypothesis, dim(B) = s - t
and, by (5.19) and (3.16), depth(B) = s - proj.dimA(B); the

assertion now follows from (5.21).



Chapter IV = Duality Theorems

1. The Yoneda pairing

Theorem (1.1) (Yoneda~Cartier). - Let C and C' be abelian

categories and suppose C has enough injectives. Let T : C—C!
be an additive, left exact functor. Then, for any two objects F, G

in C, there exist pairings
+
RP1(F) x Ext¥(F,6) — R 91 (G)

for all nonnegative integers p and g. These pairings are
d—functorial; namely, they are functorial in F and G and are

compatible with connecting morphisms induced by short exact sequences.

Proof. Choose injective resolutions O-—PF —Q*(F) and

0—G ~—»Q*(G), and define a complex of abelian groups
Hom*(Q*(F),Q*(G)) as follows: Let Hom2(Q*(F),0*(G)) be the group

of all families u = (up)

; . oP(p) s oPd
pez of morphisms u QY (F)—0" “{(G)

(not assumed compatible with the boundary). Define

g+1

o : Hom? (Q* (F) ,0* (6)) —— Hom¥T ™ (0* (F) ,0*(G)) by o(u) = du + (-1)%ua.

Then:

(i) o2 =o.

(ii) If o(u) = 0, then u anti-commutes with the boundary.
(iii) If v = 8(u), then v is homotopic to zero.

(iv) B (Hom® (Q*(F),0*(G)) is the group of homotopy classes of

morphisms which anti=-commute with the boundary

Bach u = (up) ¢ Hom?(Q*(F),0*(G)) induces a morphism
T(u) : TQ* (F) —sTQ*(G) of degree g. If &{u) = O, then by (ii)},
T(u) induces a morphism HY(T(u)): RPT(F) - Rp+q(G) for each p. If

u = 8(w) for some w, then H*(T(u)) =0 by (iii); hence, H* (T (u))
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depends only on the homotopy class of u. Therefore, there exist
pairings RPT(F) x H(Hom* (Q*(F),0*(G)) —sRP¥91(G); so the following
lemma establishes the existence assertion. The 8~functoriality is

straightforward and its proof is omitted.

Lemma (1.2). - Let C be an abelian category, F and G two
objects of C and O-——aF-—EaQ*(F) and 0 —G —>Q*{G@) injective
resolutions. Then the morphism @ : Hom™ (Q* (F) ,0* (G) )}~ Hom (F,Q0*(G)),

defined by @(u) = uoe, induces an isomorphism

B¥e : Y (Hom* (Q* (F) ,0* (6) )——>ExtY(F,G)
for all g 2 O.

1

Proof. To construct Hq(¢)_ , let at' ¢ Extq(F,G) and choose

a representative a € Hom(F,Qq(G)) of a'. Since d . a =0, a
factors through ker(dq) and yields a diagram with exact rows

> Ql(F)-———e een
i

' 1
1
b
a bo i

O ——>F ——)QO(F)

1

Y Y

i
1
< +
0 —xer(ah — o9(6) — 0¥ () — ...
since the o%(@) are injectives, there exists a morphism

b : Q¥ (F) —Q* (@), of degree g, which is unigue up to homotopy

(r21,v,2.2).

iIf a =d o s, then s may be extended to a homotopy (sp)
between b and O. Therefore, up to homotopy, b depends only on a'
If b' is the homotopy class of ((—1)pbp), then the morphism

at—-b' is clearly inverse to Hq(Q).

Proposition (1.3). - Let C, C' be abelian categories and

S, T : C—>C* additive functors. Suppose C has enough injectives
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and S, T are left exact. 1If e* : R*s ~—3R*r is a é-morphism of

degree r, then, for any two objects F and G, the diagram of

Yoneda pairings

®Ps(r) x Ext¥(F,5) — > RPT95 (@)

F(r) » ia Ep*q{G}

¢

rRP* 1 (r) x Extd(F,6) —— > RPTI™ 1 ()

commutes.
Proof. For g = 0 and all p 2 0, the diagram
RPS(F) x Hom(F,G) ——— > RPs(qG)
£P(ry o g P (q)
P (F) » Hom(F,G) ————5RP T (q)
commutes because &P is a morphism of functors.

Let O0—G — Q —>G" —> 0 be an exact sequence with @

jective. Consider the diagram

0
7
rRPs (F) xExt2(F, ) rPT95(g)
erd
eP(F) xia / /

& E:p+q(G)

RPs (Fix ExtT L (F,G") rRPHI-1g(am)
&P r (7)) xExtd(F,G) , RPTIHp ()

,Ep(FIXid FP+<{'1(G..) /
id»a /
a

’RP T (r) xExt T (F,6") —— s gPTIMT L g

in-
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By induction on g, the front face commutes; by (1.1), the horizontal

faces commute; and, by hypothesis, the end faces commutes; whence,

the assertion.

2. The spectral sequence of a composite functor
Lemma (2.1). - Let C be an abelian category with enough
injectives and let O-——»KO-——eKi-——e... be a complex in C. Then
there exists a double complex L**, called a Cartan-Eilenberg resolu-
tion of K*, which gives rise to injective resolutions as follows:
0—> kP — PO, Pt
0 —s zP(x) »22 %) 2Pt — ... .
0o —> 8P —»82%mw Pt — ... .

’ ’1
0 — K - o tw ... .
Proof. The proof is elementary ([2],XVII,1.2).

Theorem (2.2). - Let C, C* and C" be abelian categories and
suppose C and C' have enough injectives. Let T : C——C' and
S : C'—— C" be additive functors and suppose S is left exact.
Assume that T takes injectives into S-acyclics, i.e., that
(RqS)(TQ) =0 for all g >0 if Q is injective. Then, for any

object A of C, there exists a spectral sequence
Eb'9 = RIs(rPr(a)) =3 EP? = RPMY(s.m) (2).

Proof. Let O—> A —0Q* be an injective resolution and

0—T(Q*)—J** a Cartan-Eilenberg resolution (2.1). Associated
to the double complex

1 1

o-——>S(Jfr) )-—)S(J11'\ ) — ...
.. 0 —5°% —s s — ...
St To 1\1
0 —ST(Q) —> ST(Q") — ...
i 0
o) 0
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there are two spectral sequences with the same abutment.

. P,qd _ o4 Py¥*yy _
In the first spectral sequence IE1 = HII(S(J )) =

= RqS(T(Qp)). However by assumption Rqs(TQp) =0 for q > O0; so,

(5’9 =0 for q>o0. Since § is left exact, .55’ = mP(s.1(0") =
= Rp(SoT)(A). In the second, IIEE’p = H%(S(J*’p)) = SH%(J*’p); for,

0—sB¥TP__,7VP__ gT'P__ o splits since BY'P = BCII(J*’p) is
injective. However, H?(T(Q*)) = R¥r(a) and

q * e PR I . s . . \
O-—%HI(T(Q })) —=H (J"+") is an injective resolution, (2.1). Thus

g1'P -

p 9% ** - pPa(pd ;
11E5 HII(S(H (7 )) = R¥S(R"T(A)), completing the proof.

Lemma (2.3). - Let X be a ringed space. Then the category of

OX-Modules has enough injectives.

Proof. Let F be an OX—Module and let Q Dbe the OX-Module

defined by Q(U) = Qx where Qx is a fixed injective Ox—module

o
x€U
containing F. and U is any open set of X. Then @ is injective

and contains F.

Proposition (2.4). - Let X be a ringed space and F, G two

Ox-Modules. Then there exists a spectral sequence

=0

8P (x,Extd (F,G))=}Extg+q(F,G) .
X b

Proof. TI({X, Hom: (F,G)) = HomOX(F,G); so, the assertion

follows from (2.2) in view of (2.3) and the following lemma.

Lemma (2.5). - Let X be a ringed space and F, Q two

OX-Modules. If Q 1is injective, then Hom X(F,Q) is flasque.

Proof. Let U be an open subset of X and f ¢ F(U,Hom: (F,Q)).
X

Let FU be the extension of F|U by zero to all of X. Since Q

is injective, the map F.—— Q induced by f extends to an element

U

g € I’(X,Hom:X(F,Q)). Then g¢g|U = f.
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Corollar 2.6). -~ Let X be a ringed space and E, G two

OX-Modules. If E is locally free of finite type, then Extg (E,G) =

X

= Hp(x,Homox(E,G)) = #P(X, 6 ® EY) where EY= Hom X(E,Ox)-

Proof. Since E is locally free, the functor Hom. (E,-) is

ZLIOOL o )
exact. It follows that Ext? (E,G) = 0 for all g > 0. Hence, the

X
spectral sequence of (2.4) degenerates and Ep,O = HP(X,Hom (E,G)) is
2 -——OX i
equal to Extg (E,G). The second equality follows from (3.4).
X

Remark (2.7). - Let i : X¢— P be a closed immersion of ringed
spaces, E and F two Ox—Modules and G an OP—Module. Suppose E
is locally free. Then it is easily seen that there exist canonical

isomorphisms.

(2.7.1) Hom0 (F, Hom: (E,G))————aHomo (F ® E,G)
X P P
(2.7.2) Hom:X(F, Hom:P(E,G))————éﬂom P(F ® E,G)

Lemma_ (2.8). - Let i 3 X“—P be a closed immersion of ringed

spaces, Q an injective OP-Module and E a locally free Ox—Module.

Then J = Hbm:P(E,Q) 1s an injective Ox—Module.

Proof. Let O—> F' —>F be an exact sequence of Ox-Modules.

Since E 1is locally free and Q 1is injective, the sequence

Hom_. (F ® E,Q)—>Hom
(0] -0

P P
HomO (F,J)-———-;Homo (F*',J) —>0 is exact.

P X

(F* ® E,Q) — 0 is exact. Thus by (2.7.1),

Proposition (2.9). - Let X<“—P be a closed immersion of

ringed spaces, E and F two OX—Modules and G an OP-Module.

Suppose E 1is locally free of finite type. Then there exist

spectral sequences

(2.9.1) Extgx(F, Exth(E,G)) = Extg:q(E ® F,G).

(2.9.2) ExtP (r, Extd (8,0)) = Extf™ (£ o F,0).
X P P
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Proof. Apply {2.2) to the functors Hom., (E,-) and Hom. (F,-)

P OX
(resp. Hom:x(F,-)). Then (2.7.1) (resp. 2.7.2) and (2.8) yield
{(2.9.1) (resp. (2.9.2)).
Remark (2.10 Leray spectral seguence)}. - Let f : X—>Y be

a morphism of ringed spaces. 'Then the functor £, is left exact.
Furthermore, if @ 1is an injective OX—Module, then Q@ and £,0

are flasque. By (2.3) and (2.2), there exists a spectral sequence

HP (v,r%, ) == P (x,F) .

3. Complements on Ext?x(F,G).

Lemma (3.1). - Let A be a ring, B a flat A-algebra and M,N
two A-modules. Suppose M has a presentation
Eq——a e -—9EO —>M —>0 where the Ei are finite, free A-modules.
Then the canonical B-homomorphisms

Y r
ExtA(M,N)®AB ~—->ExtB(M®AB,N®AB)

are isomorphisms for O < r < q.

Proof. Consider the commutative diagram with exact rows,

o0 — HomA(M,N)@kB —_— HomA(EO

,N)@%B -——————>HOmA(E1,N)8hB
£ g h

0 —~9Hme(M8hB,N€hB)——~9H0m (E.® B,N@hB)————oHDm

5 (E®y (E,®,B,N8,B) ,

B T1TA

since g and h are clearly isomorphisms, £ is an isomorphism.

Let M!' = ker(Ed———eM) and consider the commutative diagram

with exact rows,

>0

q-1 s q-1 ur @ — g 2
Ext (EO,N)®AB » Ext) (M ,N)L_,AB >ExtA{M,N)QyAE

T T R : ql
(EO®AB,N®AB) —éDxtB {M C}ﬁAB,N@AB}——>E.xLB(M®AB,NUAB) —0.

g-1

ExtB
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Thus, the assertion follows by induction.

Proposition (3.2). - Let X be a locally noetherian scheme

and F, G two coherent OX—Modules. Then, for all q:

(i) Ext?x(F,G) is coherent
(ii) If X = Spec(d), F =M and G =N, then Ext: (F,G) = ExtI(M,N)~.
———OX A
L . q - q
(iii) For any point x € X, Ext: (F,G)x Exto (FX,GX).

X b4

(iv) If X 1is a scheme projective over a noetherian ring %k, then

Extd (F,G) 1is a finite k-module.

OX
Proof. Clearly, (i) follows from (ii); (ii) from (3.1); (iii)
from (ii) and (3.1). Furthermore, (iv) follows from (i), (2.4) and

part (i) of the following proposition.

Proposition (3.3) (Serre; [7] III, 2.2.2). - Let k be a

noetherian ring, X a projective k-scheme and F a coherent OX-Module.

Then:
(i) The k-modules Hq(X,F) are of finite type.

(ii) There exists an integer m such that for all m=>2m and

o} (¢}
all g > o0, Hq(X,F(m)) = 0.
(iii) There exists an integer m, such that for all m 2 my
Hp(X,F(m)) generates F(m).
Proposition (3.4). - Let X be a ringed space, E, F, G three
- vV = .
Ox Modules and E Hom:X(E,OX). Suppose E is locally free of

finite rank. Then the canonical homomorphisms

q v q
extd (F,6) ®, E'—Ext? (E @ F,G)
°x %x °% %

are isomorphisms for all g = O.
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d v q :
Proof. The map Ext X(F,G) ® E -———9Ext:x(E ® F,G) is clearly
an isomorphism for E = 0X and hence also for E = O; . Since E is

locally free and the map is globally defined, it is therefore an

isomorphism.

4. Serre duality

Proposition (4.1) (Serres [7] III, 2.1.22). - Let k be a

ring P = WE(= Proj(k[TO....,Tn])). Then

(i) Hq(P,OP(r)} = 0 for all r and all g # O,n.

g
q H* (P ,0p(r))

D

-n-1

(ii) The canonical homomorphism k[To,...,Tn]-——5®HO(P,OP(q)) is
q
bijective.
(iii) Hn(P,OP(—m~n-1)) is the free module on symbols gp where
0’ " '"n

the p; are nonnegative integers and Zpi= m. Furthermore,

T.&

=t
L Pgr--ePy

if . >0 or =0 1if p.= O.
po,...,pi—i,...,pn Py Pj

Theorem (4.2). - Let k be a field, P = PE and wp= OP(—n-i).

Then Yoneda pairing Hr(P,F) X Extg_r(F,wP)———aﬂn(P,wP) is nonsingular;

that is, there is an isomorphism n : Hn{P,wP)~3;ak and the induced

map yr(F): Extgnr(F,wP)———$Hr(P,F)* ig an isomorphism of d~functors in F.
P

Proof. With F = OP(—m—n-l) and r = n, the pairing becomes
" (P,0, (-n-m-1)) x H(P,0, (m))—>H"(P,0,(-n-1))
g q 4 q

(5 4eeey T ..o . TR e, .
Po P, 0 n o n °p, P,
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9o 9n . 1
However, To . Tn gpo,...,pn = go""’o if 9= Py for al i and

g q
= 0 otherwise. Hence, the bases {TOO .. TnOIZqi= m} and
{& SRR lZpi= m} are dual and the pairing is nonsingular in this

po n
case.

In general, by (3.3), there is a presentation

Ei———éEo‘——?F~——?O

where the Ei are of the form OP(-m)q for suitable integers

m, g > 0. Consider the diagram

(o} = Hom (F‘mp} » Hom {E_.u_ ) ——Hom,_ (B, ,u_)

P p - P
v, (F) v (B ¥ (E)

0 —> H (P,F)* —— Hn(P,EO)* ——>Hn(P,E1)*

where the y_ arise from the isomorphism 1 : H (P,w ) ——k
n P P

defined by n(ago }) = a. It results from the preceding paragraph

reseag
that the yn(Ei) are isomorphisms. The diagram is commutative by
the functoriality of the Yoneda pairing and its bottom row is exact

by the right exactness of Hn(P,-). Hence, y_(F) is an isomorphism.
n p

Consider an exact sequence of the form 0 —G ~3E —F —0

where E = OP(—m)q for suitable integers m, g > 0. The diagram

Extn—r-l{E,-u )——blé_}xtn-r-l (G,a ) ———)Extn-r(F,u,\ }«—AExtn_r(E,m H
o, P o B o P 0 P
p  p P p
Yy 4q (B Y opy (G) L) y_(E)
+
vl — s vytleetr— L E e — e (e,B)*

is commutative by the &-functoriality of the Yoneda pairing. If

r < n, then E) and vy (G) are isomorphisms by descending

yr+1( r+i
induction and Hr(P,E) =0 by (4.1). Finally, it follows from (2.6)



- 77 =

and (4.1) that Extg-r(
P

Serre duality is now complete.

E,wp) Hn_r(P,wP(m))q = 0. The proof of

5. Grothendieck duality

Lemma (5.1). - Let k be a field, P a regular k-scheme of

pure dimension n and X a closed subscheme of P, @y, an invertible

sheaf on P. Suppose X has pure dimension r (i.e., every

irreducible component has dimension r). Then Extd (o_,w. ) =0 for
'—'OPXP

g < n-r.

Proof. By (IIT,3.13), Extd (0 w,) =0 for g<d =
Op

= ;2§{depth(wp,x)}. Since o, is invertible, Op X" oP,x and, since
oP,x is regular, depth(op’x) = dlm(OP’x) by (III,4.12). Therefore,

d = n-r and the proof is complete.

Lemma (5.2). - Under the conditions of (5.1), there exists a

* *
o2 i 8* : =
morphism Exto { wx)-——~9ExtO

X P
n-r
@ = Ext o (ox,wP).

(_’wP) of degree r where

Progf. Let F be a coherent Ox—Module and consider the

spectral sequence (2.9.1)

t,s _ t s s+t
E2 = Exto (r ,Ext: (OX,wP) ) :Exto (P ,LUP) .
X P P
t,s
By (5.1), E, =0 for s < n-r.

DRI
-

21

Let € P(p) : ExtZ P(F,0 ) ——Ext" P(F,0_) be the edge homomorphisms.
OX X OP 14
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Given an exact sequence of Ox—Modules O0—>F'——F —F" —>0,
we deduce an exact sequence of double complexes
* ok * k * % * %
O —Hom (F",J ) —/ Hom(F,J ' ) ——Hom(F!',J ’ ) —>0, where J '’

is as in (2.2), and thence a cohomology triangle of spectral sequences

xt:) (F", Ext , 0 ))——>Ext0 (F, Ext (ox,wP))
Ext* ' %p )).
x P
*

It follows that ¢ is a map of d-functors.

Lemma (5.3). - Under the conditions of (5.2), if F is a

coherent Ox—Module, then the following diagram commutes:

HP (%, F) » Extl P(R,0 ) — 5 1 (X, 0}
OX X X

e"Pip) « id i

B (P,F) x Ext.

P
o P(F,0) ——— H' (P,0p)

4

where i is the map induced by €. (o_)(id ) e BExth © (o,,0_ ) via the
0" X wx OP X'P

Yoneda pairing.

Proof. Given f e Extg_p(F,wx), consider the diagram
X
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B (x.7) » Extl P(F,0.) s (% )
| OX X X
£* . *
id) f |.;r p(F) a
Hr(x w, ) « HOI‘l‘I1 (w_,w_) 5 1 (X, ) .
X OX XX " i
t
Q I
e (w, ) v i
X v ' n- n
uP (p,F) x Extg p(F,wP) ————— - - oH (R )
id .7 |3 i
* - *
£ . £ e’
- ¥ i
“ - n
Hr(P,uJX) > Extgpr(wx,wp) —— H (P,u)P)

where the horizontal maps £* are induced by £ via Yoneda pairing
and the rows are Yoneda pairings. If a ¢ HP(X,F), then <a,f> =

_ % . * . _ * s
= <f (a),ldwx> and <a,f (eo(wx)(ldwx))> = <f (a),eo(wx)(ldwx)> by

(1.1). By (5.2) and (1.3), the darkened square commutes; whence,

the assertion.

Theorem (5.4). - Let k be a field, P = P;

Let X be a closed subscheme of P of pure dimension r and F a

- - —1 .
, and wp OP( n-1)

coherent Ox—Module. Then for every integer s < r, the following

conditions are equivalent:

(i) Let my: Hn(P,wP)———ak be a k-linear isomorphism and

r—

N, = N ei. Then the corresponding map Ext, p(F,wx)———er(X,F)*
X

X P

is an isomorphism for r-s < p < r.
(ii) Hp(x,ox(—m)) = 0 for large m and for r-s < p < r.

(iii) Ext““P(ox,wP) =0 for r-s< p< r.
P

Proof. Assume (i). Then HP(X,OX(—m)) =0 if (and only if)

r-p _ - r-p _ -
ExtOX (Ox( m),wx) 0. However, by (2.6), ExtOX (OX( m),wx)

= Hr'p(x,wx(m)) and by (3.3, (ii)), Hr_p(x,wx(m)) = 0 for large m.

Thus (ii) holds.
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. q _ I -
Since, by (3.4), Ext:P(OX( m),wP) Ext:P(Ox,wP)(m). it

follows from (3 3,(ii}) that the spectral sequence of (2.4).

n-p-gq q _ n-p -
H (P,&OP{OX( m) ,wP))==>_E5§0P (OX( m) s0p)
degenerates and yields
O n-p _ n-p -
H (P;Eﬁop (OX'wP) (m)) = Extop (OX( m) wa) .
It therefore follows from (3.3,(iii)) and Serre duality (4.2) that

(ii) and (iii) are equivalent.
Assume (iii). Then in the spectral sequence {(2.9.1)

t,g _ t,q q n-p
E)0Y = Extox (F,Ext P(ox,wp))..—=—,sgxtop (F,mp)

where t = n-p-q, we have Eg’q =0 for n-r < gqg< n-r+s and for

q < n-r by (5.1).

n~-r+s+i

Therefore, for t = r-p < s+l, the edge homomorphism er-p(F) is an
isomorphism. However, by {(5.3), the diagram

r-p

BExty ¥ (F,0 ) —_— PP

x

JETF {F}) id

Ext? P(F,0_)——5HP (P,F) *
op p

is commutative. Hence, (i) results from Serre duality (4.2).
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llar :5). - Under the conditions of (5.4), the map

Homox(F J0 ) —H' (X,F)*

is always an isomorphism.
Corollary (5.6). -~ Under the conditions of (5.4), the map

Extg'p(F,w ) —sHP (x,F)*
. x

is an isomorphism for all p if and only if X is Cohen-Macaulay.

Bxoof. The assertion results immediately from (III,5.22),

(5.4) and (3.2).



Chapter V - Flat Morphisms

1. Faithful flatness

Let C, C' be categories an@ T : C—> C' a functor. Then

T is said to be faithful if, for all M, N ¢ C, the canonical map

Hom (M ,N) => Hom {(TM,TN) is injective. If ¢, €' are additive and
T 1is additive, then clearly T is faithful if and only if, for all

maps u : M—3N, T{(u) =0 implies u = O.

Proposition (1.1}). - If C, C' are abelian categories and
T : C—3C' 1is an additive functor, then the following conditions
are equivalent:
(i) T is exact and faithful.
{ii) T is exact and, for all N ¢ C, TN = 0 implies N = O.
(iii) A sequence N'-—> N —>N" in C is exact if and only if

TNV = TN —> TN" is exact.

Proof. Assume {(i). Then TN = Q implies T(idN) = 03 hence,

idN= 0O and N = 0; thus, (ii) holds. 1In (iii), suppose

Nt —29 oy ~IY 5 oN®  is exact. Then Tvu = TvTu = O; s0, vu = O

by (i). Let I = im(u), K = ker(v), i : I—>K and K' = coker(i).
Since T is exact, it follows that TK' = 0; so, K' =0 by

(i) == (ii). Thus, N'-—> N~ N" is exact and (iii) holds.

Let u ¢ N'—>N be such that Tu = 0. If (iii) holds,
consider the map v : N—>scoker{u). Tv is an isomorphism, so v
is an isomorphism and u = 0; hence, (i) holds. If (ii) holds,
consider I = im{u). T(I) =0, so I =0 and u = O; hence, (i)

holds.
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Corollary (1.2). ~ Under the conditions of (1.1), suppose

there exists a family {Na} of objects of C such that, for each
nonzero object N of C, there exist exact sequences O —s3N'——N
and N'———+NB———+O for suitable N' and Nﬁ' Then T is exact and
faithful if and only if T 1is exact and TNB # 0 for all NB'

Definition {1.3). - Let A be a ring. An A-module M is said

to be faithfully flat over A if the functor M@k— is exact and

faithful.

Proposition (1.4). - Let A be a ring and M an A-module.

Then the following conditions are equivalent:

(1) M 1is faithfully flat.

(ii) M 1is flat and, if N is an A-module such that MgkN = 0, then
N = 0.

(iii) M is flat and, for all maximal ideals m, Mxh(A/m) # 0.

(iv) A sequence of A-modules N!'—s N —>N" is exact if and only if

1 it :
M@%N —_—9M8hN'—-9M€§N is exact.

Proof. Let N be a nonzero A-module. Then there exists an
injection of the form 0-——>A/I —N where 1 1is a proper ideal of
A; further, there exists a surjection A/I—~——>A/m —0O where m is
a maximal ideal Therefore, the equivalence follows from (1.1) and

(1.2).

Proposition (1.5). ~ Let A——B be a ring homomorphism, M, N
two A-modules and P a B-module. Then:
(i) If M and N are flat (resp. faithfully flat) over A, then
M@kN is flat (resp. faithfully flat) over A.
{ii) If M 1is flat (resp. faithfully flat) over A, then MQ,B is

flat {resp. faithfully flat) over B.
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(iii) 1f B 1is flat (resp. faithfully flat) over A and P is flat
(resp. faithfully flat) over B, then P is flat (resp. faith-
fully flat) over A.

{(iv) If B is faithfully flat over A and M®, B is flat (resp.
faithfully flat) over B, then M is flat (resp. faithfully

flat) over A.

Proof. The assertions result easily from the following formulas,

ft

functorial in R: {M@hN)@hR M@k(N@kR);(M&AB)@%R = MghR; P@%R =

= P@B(B®AR); and (M@AR) ®,B

(M@AB) @B { R@AB) .

Proposition (1.6). - Let ¢ : A—>B be a local homomorphism

of rings and M a B-module of finite type. Then M is faithfully
flat over A if (and only if) M is flat over A and M # 0. 1In
particular, B is faithfully flat over A if (and only if} B is

flat over A.

Proof. Let m (resp. n) be the maximal ideal of A (resp. B).
By (1.4), it suffices to show that Msh(A/m) # 0. However, if

M2 (A/m) = O, then nM = M; so, by Nakayama's lemma, M = O.
A

Lemma (1.7). - Let A be a ring and M an A-module. Then ™M

is flat if {(and only if) Tori(M,A/I) =0 for all ideals 1I.

Proof. If N is an A-module generated by r elements, there
exists a submodule N' of N generated by r-1 elements such that

N/N' = A/I for some ideal I. The sequence
A . a A .
Tori(M,N )«——aTorl(M,N)———eTori(M,N/N )

is then exact. It follows by induction on r that Tori(M,N) =0
for all A-modules N of finite type. Finally, since any A-module is

the inductive limit of its submodules of finite type and since the
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A . s R ..
functor Tori(M,—) commutes with inductive limits, Tori(M,N) =0

for all A-modules N.

Lemma (1.8). - Let A be a ring and M an A-module. For any
ideal I of A, Tor?(M,A/I) = 0 if and only if the canonical sur-

jection I@AM-—-)IM is bijective.
Proof. The assertion results immediately from the exact sequence
A
O——aTorl(M,A/I)———>I®AM—>M.

Theorem (1.9). - Let ¢ : A——>B be a ring homomorphism. Then

the following conditions are equivalent:

(i) B is faithfully flat over A.

(ii) ¢ is injective and B/e(A) is flat over A.

(iii) B 1is flat over A and, for any A-module M, idMgm : M——ﬂM@AB
is injective.

(iv) For any ideal I of A, the natural map I@AB———aIB is

bijective and cp'l (1B)

il

I.

Proof. Assume (i) and consider the sequence O — N ~—-9M1>M®AB
: id
where N = ker{u). Then the seguence O-———)N@AB-———>M®AB E@}—B>M®AB®AB
is exact and u@idB has a left inverse induced by the canonical map

B@AB-—-)B; hence, N@AB = 0. Thus N =0 and (iii) holds.
I1f the sedquence 0—>A———(L-?B—-—>B/‘4)(A)——-)O is exact, it
vields an exact sequence
A A _
o—aTori(M,B)-—»Tori(M,B/¢(A))~—+M —M®, B
for all A-modules M. It follows that (ii) and (iii) are equivalent.
Assume (iii). By (1.8}, 1®,B—1IB is bijectives
so, O0——A/I—>B/IB =(A/I)®B is exact and it follows that

-1 .
¢ “{(IB} = I. Thus, {(iv) holds.
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Finally, assume (iv); by (1.8), Tor?(B,A/I) = 0 and,thus, by
{(1.7), B is flat. If m is a maximal ideal of A, then ¢-1(mB) =m
implies mB # B; so O # B/mB = B&A(A/m). By (1.4), B is faithfully

flat over A.

Proposition (1.10). - Let A be a noetherian ring and ¢ an
ideal of A. Then A = %im A/qr is a flat A-module. Furthermore, A

is faithfully A-~flat if and only if q ¢ rad(a).

Proof. The functor Mk——aﬁ@kM is exact for finite A-modules
M by (II,1.17 and 1.18). If there were an injection N'—N such
that N’Ghﬁ-——eN@hﬁ is not injective, then there would be a sub-
injection M'—5M of finite submodules such that M'zhﬁ-——eMxhﬁ is

not injective; hence A is flat.

If m is a maximal ideal of A, then, by (II1,1.18),
a _ PO r . a . .
A@hA/m = (A/m) lim A/(qg + m); so, A@%A/m # 0 if and only if

g ¢ m. Therefore the last assertion follows from {(1.4).
2. Flat morphisms

Definition (2.1). - Let f : X——>Y be a morphism of local-

ringed spaces and F an Ox—Module. Then F 1is said to be flat over

Y t x € X if F is

at % Of(x)-flat, to be flat over y e Y if F

is flat over Y at every x ¢ f_i(y), to be flat over Y if F is

flat over every y € Y and to be faithfully flat over Y if P is

flat over Y and PFgk(y) # O for every vy ¢ Y.

Proposition (2.2). - Let f : X——>Y be a morphism of affine

schemes and F a quasi-coherent OX-Module. Then F is flat (resp.
faithfully flat) over Y if and only if M = P(X,F) is flat (resp.

faithfully flat) over A = P(Y,OY).
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Proof. Given a sequence O—>N'—>N of A-modules, the
sequence O-——)M@hﬁ'-——éM@%N is exact if (and only if) the sequence

0———%ﬁ8b ﬁ'———éﬁgb N is exact. Thus, if F = M is flat, then M is
Y Y
is flat; further, if F is faithfully flat, then M is faithfully

flat by (1.4). The converse results from the following lemma.

Lemma (2.3). - Let A be a ring, B an A-algebra and S
(resp. T) a multiplicative set in A (resp. B) such that S maps into

- ] -1
T. If a B-module M is flat over A, then T 1M is flat over S "A.

Proof. If N is an (S_lA)—module, then T_1M® 4 N =
S A

-1 -
=T " (M® N); hence, the functor T 1M®

A S-lA_
exact functors M@h_ and T-l-.

is the composite of the

Proposition (2.4). - Let f : X——>Y be a morphism of schemes
and F a quasi-coherent OX-Module of finite type. Then F is
faithfully flat over Y if (and only if) F is flat over Y and
f(Supp(F)) = Y.

Proof. It suffices to show that F@b Oy # 0 if and only if
Y

F@b k(y) # 0. However, if Fgk(y) # O, then, clearly, F@Oy # 03
Y
conversely, if F@Dy # O, then there exists a point x e¢ X such that
= |
f(x) y and F_ # 0. Therefore mny ¢mF # F_ by Nakayama's

lemma; so, F®_ k(y) # O.
OY

Definition (2.5). - A morphism of schemes f : X——Y is said
to be guasi-flat if there exists a quasi-coherent Ox—Module F of
finite type which is flat over Y and whose support is X. Further
f is said to be guasi-faithfully flat if f is quasi-flat and sur-
jective. Finally, £ is said to be flat (resp. faithfully flat) if

Oy is flat over Y (resp. Oy is flat over Y and f is surjective).



- 88 -

Corollary (2.6). ~ Let f be a quasi-flat morphism of schemes.

Let x € X and y = £(x). Then for all generizations y' € Spec(Oy)

of vy, there exists a generization x' of x such that £(x') = y°'.

Proof. We may assume X = Spec(Ox) and Y = Spec(oy). Let F
be the given OX—Module. By (1.6}, F 1is faithfully flat over Oy’ so

the assertion follows from (2.4)

Proposition (2.7) (Le sorite for flat morphisms}. -

{i) An open immersion is flat (resp. quasi-flat).

(ii) The composition of flat (resp. faithfully flat) morphisms is
flat (resp. faithfully flat).

(iii) Any base extension of a flat (resp. faithfully flat, quasi-flat,
quasi-faithfully flat) morphism is flat (resp. faithfully flat,
quasi-flat, quasi-faithfully flat).

(iv) The product of flat (resp. faithfully flat) morphisms is flat

{resp. faithfully flat).

Proof. Assertion (i) is trivial; (ii) follows from (1.5,(iii))s

(iii) , from (1.5,(ii)) and (II,2.7): and (iv), from (ii) and (iii).

Proposition (2.8). -~ Let X and Y be locally noetherian
schemes, £ : X——Y a finite morphism and F a coherent OX—Module.

If F is flat over y € Y, then f,F 1is locally free at vy.

Proof. Since f is affine, (f*F)y is equal to M = P(f_i(y),F).
By (2.2), M 1is flat over Oy. Further, M 1is finite over the

noetherian local ring Oy' Therefore, by (III,5.8), (f*F)y is free.

Definition (2.9). - Let X be a scheme and Y a closed sub-

scheme of X. The codimension of Y in X, denoted codim (Y,X), is

defined as the infimum of the integers dim(Ox y)as y runs through Y.
’
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Proposition (2.10). - Let f : X——=Y be a surjective morphism
of locally noetherian schemes, Y' a closed irreducible subscheme of
Y and X' an irreducible component of f—l(Y'). Then:

(i) 1If flx,: X'——Y' is generically surjective, then
codim (X' ,X) £ codim(Y',Y).
(ii) If f 1is quasi-flat, then f'X' is generically surjective and

codim (X',X) = codim(f_l(Y'),X) = codim (Y',Y).

Proof. Let 2z Dbe the generic point of Y' and w the generic
point of X'. By definition, codim(Y',Y) = dim(OY Z); by (I11,1.7),
. < g4 . <
dlm(Ox,w) < d1m(OY,Z) + dlm(OX,wxb k(z)) <

dim(o, )3
Y.z Y,z

whence (i).

Suppose f is quasi-flat. Then, by (2.6), f(w) has no
generization; hence f£f(w) = z. Part (ii) now results from the

following proposition.

Proposition (2.11). - Let ¢ : A—>B be a local homomorphism
of noetherian rings, m the maximal ideal of A and k = A/m.
Assume that either of the following hypotheses holds:
(2) There exists a finite nonzero B-module M which is flat over A.
(b) For all primes p of A not equal to m and all minimal

(essential) primes ¢q of pB,w_l(q) # m.

Then dim(B) = dim(a) + dim(B@hk).

Proof. Assume (a) and let g be any minimal prime of pB.
If ¢-1(q) = m, then the composition A———aB-——»Bq is a local
homomorphism. By (2.3) and (1.5), Mq is flat over Aj; so, by (1.6),
Mq is faithfully flat over A. Hence, by (2.4), there exists a
>

prime g' of Bq such that ¢_1(q') = p. Thus, qu # gt' > pB,

contradicting minimality of ¢g. Therefore (b) holds.
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Assume (b). If dim(A) = O, then m is the nilradical of A
by (II,4.7). Hence, mB is contained in the nilradical n of B.

So, dim(B) = dim(B/nB) and the formula holds.

Let dim(a) > 0. Let {qi} be the set of minimal primes of
B and p; = whl(qi). Suppose p; =m for some 1i. Since dim{A) > O,
there exists a prime p of A not equal to m. Then qi > pB and,
since q; is a minimal prime of B, it is g fortiori a minimal prime

of pB, contradicting (b). Hence P, #m for all i.

Let {pg} be the set of minimal primes of A. Since
dim(a) > O, pg #m. Since A and B are noetherian, they have
only a finite number of minimal primes by (II,3.7). Hence, by
(I11,1.5), there exists an element x e m, X £ p; and x £ p% for
all i, j. Let A' = 3a/xA, B' = B/xB. By (II1,1.6), dim(B') =
= dim(B)-1 and dim(A') = dim(A)-1. Moreover, it is clear that
dim(B@kk) = dim(B'@k,k) and that (b) holds for ¢ : A'-——B'. Hence,

the formula results by induction.

3. The local criterion of flatness

Lemma (3.1). - Let A—>B be a homomorphism of rings and M
an A-module. Then the following conditions are equivalent:
(i) Tori(M,N) = 0 for all B-modules N.

(ii) M@%B is a flat B-module and Tori(M,B) = 0.

Proof. Dualized, (IV,2 2) yields the spectral sequence of a
2 .
composite right-exact functor: E_ = L S(L T(M)) E =1 {(S+T) (M), With
P 9 pa P a = Tp+q” Tprg "
S = - Q%N, T = =~ ka and SoT= - 8%N, the exact sequence of terms of

low degree ([2],XV,5.12a) is
A A B
N@BTorl(M,B)——> Tor1 (M,N) — Torl(M@)AB,N) —3>0,

and the equivalence follows easily.
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Theorem (3.2). - Let A be a ring, I an ideal of A and M

an A-module. Consider the following conditions:

(i) M is a flat A-module.

(ii) MﬁhA/I is a flat (a/1I)-module and Tori(M,A/I) = 0.

(iiv) M@hA/I is a flat (A/I)-module and the canonical homomorphism
I@hM-——%IM is an isomorphism.

(iid) Tor?(M,N) = 0 for all A-modules N annihilated by 1I.

(iii') Tor?(M,N) = 0 for all A-modules N annihilated by I° for
some s (depending on N)

(iv) M&h(A/IS) is a flat (A/Is)~modu1e for all s.

(v) MG%(A/I) is a flat (A/I)-module and y : grg(M)gh/Igr;(A)——agr}(M)

is an isomorphism.

Then the following implications hold:

(i) = (1i) = (ii") & (iii) & (1ii') = (iv) &> (V) .

Further, suppose that I is nilpotent or that the following
three conditions hold: A is noetherian; there exists a noetherian
A-algebra B such that M is a finite B-module; and 1IB ¢ rad(B).

Then (iv) implies (i) and, hence, all the conditions are equivalent.

Proof. By (1.5), (i) implies (ii) and, by (1.8), (ii) is
equivalent to (ii'). By (3.1) with B = A/I, (ii) is equivalent to

(iii) and, by (3.1) with B = A/1°, (iii') implies (iv).

The implication (iii')=p(iii) is trivial. Assume {(iii). Let

N be annihilated by 1° and consider the exact seguence
A A A
Tor1 (M, I1N)—> Torl (M,N}) —> Tor1 (M,N/IN)

since IN is annihilated by Is-i and N/IN is annihilated by I,
the two end terms may be assumed zero by induction on s. Then

Tor?(M,N) = 0 and thus (iii) is equivalent to (iii').
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Consider the diagram

IS+1®AM ———1°g,M ———)gri(A)@A/Igr?(M) — 0
Ds+l 65 Ys
o ——>15’.L1M >xs;4 > gri(M) 50
Assume (iii'). Then, by (1.8), o, and o_,, are isomorphisms. Thus,

for all s > O, Ys is an isomorphism; hence, y = & Yo is an iso-
morphism. Furthermore, by (iiit')=— (ii), M@h(A/I) is a flat

(3/1) -module. Thus, (iii') implies (v).

. . . s+1 s .
If es+1 is an isomorphism, the map I ngn——?I 8kM is
injective. If further (v) holds, Vg is an isomorphism; so by the
five lemma, o, is an isomorphism. If I is nilpotent, then Og41
is an isomorphism for large s; hence, if (v) also holds, descending

induction yields (ii').

Fix n > 0 and replace A by A/In, I by I/In and M by
n , L \ . L, .
M/IM to obtain conditions (1)n, (11)n,(111)n, (1v)n and (v)n. The

implication (iv)==%(i)n is trivials (i)n==§(v)n, proved. Observe

[ gri(M) for s <n

o for s =2 n

gr?I/In) (M/17m) = 1 ;

hence, if (v)n holds for all n, then (v) holds. Therefore, (iv)

implies {v}.

Since I/In is nilpotent, (v)n implies (ii')n. However, the
implications (v)::::}(v)rl and (ii')n;==)(iv)n are proved, and, clearly,

if (iv)n holds for all n, then (iv) holds. Hence, (v) implies (iv).
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It remains to prove the implication (iv)== (i) under the
following conditions: A 1is noetherian; there exists a noetherian

A-algebra B such that M is a finite B-module; and 1IB ¢ rad(B).

Let N'—>N be an injection of finite A-modules and consider
the injection h : N'/(IanN')—m/IrN. Then h@idM may be written
in the form
®idyg 7%yt (N'/(TNONY)® o (M, (8/1") )-'(N/IrN)®(A/Ir) (Mg, A/T") ,thus
h&ﬁdM is injective by (iv). By the Artin-Rees lemma (II,1.14), there
exists an integer k 2 O such that Ir—k(N'nIkN) = N'ﬂIrN for all
r >0. Let M' be the image of (N'nIkN)ka in N'gkm. Then
heﬁdM becomes g : N'@%M/Ir_kM'-——9N8%M/II(N8kM). The filtrations

r-k

(1 M'} and (II(N'® M)) induce the same topology on N'@hM; hence,

A
by (II,1.9) and 1.8), g : (N'®M) " — (N®,M)~ is injective. There-
fore, by Krullt's intersection theorem (II,1.15}, N'@@M-——aN@gM is
injective. Hence, it follows from (1.7) and (1.8) that M is flat,

completing the proof of the local criterion.

Proposition (3.3). - Let A-——B be a homomorphism of
noetherian rings, I an ideal of A and I' an ideal of B such
that IB ¢ I' ¢ rad(B). Let M be a finite B-module and M=
= Lim M/I'nM. Then the following conditions are equivalent:

(i) M is flat over A.
(ii) M is flat over A.

(iii) M is flat over a.

Proof. Since B is faithfully flat over B (1.10}), the functor
- 8&M is exact if and only if -~ ShM@bﬁ is exact. However, by

{11,1.18), - 8%& = - thﬁbﬁ. Hence (i) and (ii) are eqguivalent.

By (II1,1.18), M is a finite g—module; by (I1,1.22), B is a

noetherian A~ (resp. A-) algebra, and A and A are both noetherian
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rings; and, by (II,1.23), IB ¢ rad(B). Since A/In =4 ﬁ/in by
(11,1.19), the equivalence of (i) and (iv) of the local criterion

(3.2), yields the equivalence of (ii) and (iii).

Proposition (3.4). - Let R—)A and A—>B be local homo-
morphisms of noetherian rings and let M be a finite B-module.
Suppose A 1is flat over R. Then M is flat over A if (and only
if) the following two conditions hold:

(a) M is flat over R.
(b) Mshk is flat over A@%k where kX = R/m and m is the maximal

ideal.

Proof. The implication (i)= (v) of the local criterion applied

to M vyields (M/IMMbkgr;(R)A=;9gr;(M) where I = mA, and to A

~

yields (A/I)Gigr;(R) )gr;(A). Therefore, by (v)== (i) of the

local criterion, M is flat over A.

Proposition (3.5). - Let A——B be a local homomorphism of

noetherian rings. Let M be a finite B-module, m the maximal ideal
of A and k = A/m. Assume the following conditions hold:

(a) A is a regular local ring.

(b) M is a Cohen-Macaulay B-module.

(c) dimB(M) = dim(A) + dim (M®Ak).

B@hk
Then M 1is flat over A.

Proof. Since k 1is a field, M@hk is flat over k. §So, by

(ii)= (i) of the local criterion, it suffices to prove Tori(M,k) = 0.
Let Xy,.--,X, be reqgular parameters of A where r = dim(A). Then,
by (c),

dimB(M/(le + ...+ er)) = dimB(M) - dim(a) .
Hence, by the Cohen-Macaulay theorem (III,4.3), (xl,...,xr) is an

M-regular sequence.
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= = + ... . .
Let Mi M/(xiM + ... + xiM) and A, A/(xiA + X:.A)
We prove Tor?(M,Ai) = O by induction on i. If i = 0O, then
A=A is A-flat. If i 2 0, then the exact seguence (III,4.11)
*i41
O——ﬂAi ;Ai >A

{41 >0 yields an exact sequence

X
A A i+l
Torl(M,Ai)———aTori(M,Ai+1)———9Mi—————>Mi.

By induction, Tor?(M,Ai) = O and, by M-reqularity, multiplication by

. . . A _
Xy 1s injective; hence, Torl(M,Ai+1) = O.

Corxollary (3.6). - Let A——B be a quasi-finite, (cf VI1,2.1),

local homomorphism of regular local rings having the same dimension.

Then B 1is flat over A.

Proof. Let k Dbe the residue field of A. Since B is quasi-
finite over A, dim(B@hk) = 0 (I1,4.5 and 4.7). By (I11,4.12), B is

Cohen-Macaulay. Hence, (3.5) yields the assertion.
4. Constructible sets

Definition (4.1). - Let X be a noetherian topological space

(i.e., the closed sets satisfy the minimum conc¢ition). A subset 2
is said to be constructible if it is a finite union of locally closed

subsets of X.

Remark (4.2). -

(i) Open sets and closed sets are constructible.

(ii) If Z and 2Z' are constructible, then 3ZUZ' and 2ZNZ' are
constructible.

{iii) If £ : Y—3X is continuous and 2 is constructible in X,
then f—l(z) is constructible in Y.

(iv) If Z is constructible in Y and Y is constructible in X,

then 2 1is constructible in X.
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Lemma (4.3). ~ Let X be a noetherian space. A subset 2 is
constructible if and only if the following condition holds: For all
closed irreducible subsets Y such that 2 0 Y is dense in Y, there
exists a nonempty set V in 2ZNY which is open in Y.

n
Proof. Suppose Z 1is constructible; say, Z = §;{(VinFi) with

the vV, open and the F, closed. Let Y be a closed irreducible
subset such that 2NY is dense in Y. Then 2NY = U(ViﬂFi) where
4

Vi = ViﬂY and F;=Fuf1Y. Now, the dense subset 2ZNY of Y is contained

L]
in the closed subset UFi; so, Y

L}

UF;. However, Y is irreducible;

so, for some 3, F; =Y and VS v;nFS < ZNY.

]

Conversely, suppose the condition is satisfied. Let 8 be
the family of closed subsets Y of X such that 2ZnY is not con-
structible. Suppose S is nonempty and let X' be a minimal element
of S. Replacing X' by X, we may assume 2ZNY is constructible

for all proper closed subsets Y.

Suppose X = X1U X, where X, ,X are proper closed subsets.

2 172
Then each Zﬂxi is constructible; hence,Z=(ZﬂX1)U(ZﬂX2) is con-

structible.

Suppose X is irreducible. 1If the closure 2 of 2 is a
proper subset, then 2 = ZNZ is constructible. If Z = X, then, by
hypothesis, there exists a nonempty open set V in 2. Then ¥F = X-V

is a proper closed subset; so, Z = VU(FNZ) 1is constructible.

Lemma (4.4). - Let X be a noetherian space such that every
closed irreducible subset has a generic point. Let Z be a con-
structible subset of X and x € Z. Then Z 1is a neighborhood of

x if (and only if) every generization x' of x is in 2.
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Proof. By noetherian induction, we may assume that, for every
proper closed subset Y of X which contains x, ¥YnZ is a neigh-
borhood of x in Y. Suppose X = XU X, where X, and X2 are

proper closed subsets. For 1 = 1,2, if x ¢ Xi’ then, by assumption,

there exists an open set Vi of Xi such that x € Vic xin Zs if

x fX,, set V, =@, Let F.=X.-V,, F=FUF, and V = X-F. Then
1 1 1 1 1

1 2

V is a neighborhood of x and V ¢ V1U Vzc Z3; so, Z2 1is a neighbor-

hood of x.

Suppose X is irreducible. If x' is its generic point, then,
by hypothesis x' ¢ Z; whence, Z = X. So, by (4.3), there exists a
subset V of 2 which is open. If x € V, the proof is complete.
If x £V, let Y = X~V. Then, ¥ 1is a proper closed subset of X
and x € Y. Hence, by assumption, YNZ 1is a neighborhood of =x in
Y. Let F be the closure of X-Z in X. Then F 1is also the
closure of X-Z in X~V =7Z; so, x £ F. Let V! = X-F, Then V' is

a neighborhood of ® contained in Z and thus Z is a neighborhood of x.

Proposition (4.5). - Let X be a locally noetherian space

such that every closed irreducible subset has a generic point. Then
a subset V of X is open if (and only if) the following two con-
ditions are satisfied for all x € V:

{a) V contains every generization of x.

(b) vn{x} is a neighborhood of x in {x}.

Proof. The assertion being local, we may assume X is
noetherian. Then, by (4.3), V is constructible; hence, by (4.4}, V

is open.

Theorem (4.6) (Chevalley). - Let f : X——Y be a morphism of

finite type of noetherian schemes. Let Z be a constructible subset

of X. Then f(Z) is constructible.
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n
Proof. Let 2 = ) Zi where the Zi are locally closed.

i=1
Give each Zi the (unique)} induced, reduced subscheme structure.
Since X 1is a noetherian space, the immersions ZiL——éx are of

finite type. Replacing X by JLZi, we may therefore assume 2 = X

and X 1is reduced.

Let T be a closed irreducible subset of Y such that
TNE(X) is dense in T; in view of (4.3), it suffices to prove that
TNE(X) contains an open set of T. Since TNE(X) = e(e7 (), if
we replace Y by T and X by £y, given their reduced sub-
scheme structures, we may assume that £(X) is dense in Y and that

Y is reduced and irreducible.

We clearly may assume Y is affine. Then X = uxi with Xi
affine and irreducible. Since Y is irreducible, f(Xj) is dense in
¥ for some j. Hence, replacing X by Xj’ we may assume X is

affine, reduced and irreducible.

Let Y = Spec(A) and X = Spec(B) where A and B are inte-
gral domains and B is of finite type over A. Since £(X) is dense
in Y, we may assume A is contained in B. It now remains to show
that there exists a nonzero element g ¢ A such that, for all primes
p of A such that g £ p, there exists a prime P of B such that
p =AnNP. Take g € A and C = A[T1""’Tn] as provided by the
lemma below. Then ng is prime in Cg; so, since Bg is integral
over Cg, there exists a prime P' of Bg lying over pCg by

(I11,2.2). Let P = P'NB; then PNA = p.

Lemma (4.7). - Let A be a domain and B an A-algebra of
finite type which contains A. Then there exists a nonzero element
g of A and a subalgebra C of B isomorphic to a polynomial

algebra A[ti""’tm] such that Bg is integral over Cg'
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Proof. Let S = A-{0} and K = S 1A. Then, by (I1I,2.5),
there exist elements Tl,...,Tne S_iB, algebraically independent over
K, such that S_iB is integral over the polynomial algebra K[Ti""’Tn]'
There exists g € S such that Ti= ti/g with tie B and such that
the integral equations of generators ZyreeenZ) of S_lB over K

have coefficients of the form c¢/g with ¢ € A. Then Bg is integral

over A[t] .
[]g

Proposition (4.8). - Let X and Y be locally noetherian
schemes and £ : X——Y a morphism locally of finite type. Let X
be a point of X and y = f(x). If V 1is a neighborhood of x,
then f£(V) is a neighborhood of y if (and only if), for all
generizations y' of vy, there exists a generization x' of x such

that f£(x') = y'.

Proof. We may assume that X, Y are affine and noetherian and
that V is open. By (4.6), £(V) is constructible; so, by (4.4),

£(V) is a neighborhood of y.
5. Flat morphisms and open sets

Theorem (5.1). - Let X and Y be locally noetherian schemes
and f : X——>Y a morphism locally of finite type. If £ is quasi-

flat, then £ 1is open.

Proof. Let U be an open set of X and y = f(x) a point of
£f(U). By (2.6), for any generization y' of vy, there exists a
generization x' of x such that £(x') = y'; hence, by (4.8), £

is open.

Theorem (5.2) (Lemma of generic flatness). - Let A be a

noetherian domain, B an A-algebra of finite type and M a finite
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B-module. Then there exists a nonzero element f of A such that

Mf is free over Af.

Proof. If K 1is the quotient field of A, then BGkK is a
K-algebra of finite type and M@kK is a (B@hK)~modu1e of finite

type. Let n = dim(M&AK).

If n < O, then MR, K = 0. Let {gl,...,gn}- be a set of
generators of M over B. There exists a nonzero element £ of &

such that fgi = Q0 for all i. Then Mf= 0.

By (I1,3.7), there exists a filtration of B-modules
M=M> .... DM =0

0 |

~

such that Mi/Mi+1 = B/pi for suitable primes p; of B. Suppose

there exist elements fie A such that the (Mi/M are free over

i+1)f.

i
Afi. If £ = Hfi’ then Mf is free over Af.
M is of the form B/p. Further, replacing B by B/p, we may

Hence, we may assume

assume B is a domain. Let I be the annihilator of the A-module

B. If O #g € I, then Bg= 0; so, B@hK = 0.

Assume n = dim(B@hK) is not zero. Then, by the above para-
graph, A—> B is injective. By (4.7), there exists a nonzero element
g of A and a polynomial algebra ¢ = A[Ti”"’Tr] contained in B
such that Bg is integral over Cg. Replacing A by Ag and B by
Bg’ we may assume B is integral over C. Hence, by (I1II,2.2),

n = dim(ce%K). There exists an exact sequence of C-modules of the form
0—c" —»B —N —0

where m = dim (B@kK(T)). It follows that dim(N@hK) < n. Hence,

K(7)

by induction, there exists a nonzero element h of A such that

Nh is a free Ah-module. Therefore, Bh

proof of (5.2) is complete.

is a free Ah—module and the
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Lemma (5.3). - Let A be a noetherian ring, B an/A-algebra
of finite type and M a finite B-module. Let p be a prime of B
and g the trace of p in A. Suppose MP is flat over Aq {or,
equivalently, over A). Then there exists a nonzero element g of A
such that:
(i) (M/qM)g is flat over A/q.

. A
(ii) Torl(M,A/q)g = 0

Proof. The lemma {5.2) of generic flatness, applied to A/q,
yields an f € A-gq such that (M/qM)f is flat over A/q. By
hypothesis 0 = Tor?(Mp,A/q) = Tor?(M,A/q)p. Since Tor?(M,A/q) is
a finite B-module, there exists an element h of B-p such that

Tori(M,A/q)h = 0. fThen (i) and (ii) hold for g = fh.

Lemma (5.4). - Under the assumptions of (5.3), if p' is a
prime of B containing p such that g ¢ p', then Mp, is flat

over Aq (or, equivalently, over A).

Proof. By (5.3, (i)) and (2.3}, Mp'/qu' is flat over A/g
and, by (5.3,(ii)), 0 = Tori(M,A/q)p‘ = Tor?(Mp,,A/q}. Hence, the
local criterion (3.2), applied to the A~algebra Bp,, the Bp,—module

Mp, and the ideal ¢, yields the assertion.

Theorem (5.5). - Let X and Y be locally noetherian schemes

and £ : X-——Y a morphism locally of finite type. Let F be a
coherent OX~Module and U the set of points x ¢ X such that F

is flat over of(x)’ Then U 1is open.

Procf. Since generization corresponds to localization, it
follows from (2.3), (5.3) and (5.4) that the two conditions of (4.5)

hold; hence, U is open.



Chapter VI - Etale Morphisms

1. Differentials

Definition (1.1). - Let kX be a ring, A a k-algebra and M

an A-module. The module of k-derivations of A in M, denoted
Derk(A,M), is defined as the set of all maps D : A——M satisfying
the following two conditions:

(2) D 1is k-linear.

(b) D(fg) = fD(g) + gD(f) for all £, g € A.

Remark (1.2). - Let k be a ring, A a k-algebra, M an
A-module and D : A—>M a Z-linear map. Then:
(i) If D satisfies (b), then D satisfies (a) if and only if
D(f) = 0 for all £ ¢ k.

(ii) Derk(A,M) is a functor in M.

Definition (1.3). - Let k be a ring and A a k-algebra.

Suppose that the functor Mb——aDerk(A,M) is represented by the pair

1 1 .
(dA/k,Q A/k)’ namely, suppose that QA/k is an A-module, that

1 .
dA/ke Derk(A,QA/k) and that, given any A-module M and any

k~derivation D : A-——M, there exists a unigue A-homomorphism

w

1 .
QA/E———?M such that the following diagram commutes:

a
A A/k 1

> QA/k

M

(or, equivalently, that the map of functors HbmA(Q;/k,—)———aDerk(A,-L

induced by dA/k’ is an isomorphism). By "abstract nonsense", the



- 103 -

. 1 . . . . . .
pair (dA/k’QA/k) is easily seen to be unique up to unique isomorphism.

1
The A-module QA/k

the exterior differential of A over k; and

is called the module of 1-differentials of A

over k;

dp e’
1 . . .
(dA/k'QA/k)’ the differential pair of A ogver k.

Proposition (1.4). - Let k be a ring and A = k[Ta] a

polynomial algebra (in possibly infinitely many variables). Let Q
be the free A-module on the symbols dT and d : A-—Q the
derivation defined by d4dP(T) = 55—-dT . Then (4,Q) 1is the

differential pair of A over k.

Proof. Let M be an A-module, D e Derk(A,M) and define
o) 54

W : Q=M by w(dTa) = D(Ta)‘ Then w(dP(T)) = EE— w(dT ) =
= D(P(T)); whence, the assertion.
Remark (1.5). - Let A—2* B be a commutative diagram
[ ]
k —m—k!

of commutative rings and suppose the differential pairs (dA/k’Qi/k)’
(dB/k’u;/k) and (dB/k"Q;/k') exist. Then, since
dB/k'e Derk(B,Q;/k), there exists a unique B-homomorphism
VB/k! Q;/E—-—9Q;/k. such that dB/k' Y dB/k . Further-
more, since dB/k o @ € Derk(A,Qg/k), there exists a unique
A~homomorphism w : ;/k Q1 such that w o dA/k = dB/k o 93
whence a B-homomorphism uB/A/k= ;/k @hB-__’Qé/k such that the

following diagram commutes:

2 “miak 0 TBARYx
—_—— —_—
A/k @ B QB/k QB/k'
a ™
. B/k
dA/k @kl T | T i dB/k‘
A 8k K ¢ &1 B B B
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Theorem (1.6). ~ Let k¥ be a ring, ¢ : A—» B a k-algebra

homomorphism. If the differential pairs exist, then there exists a

canonical exact sequence of B-modules

1 “s/a/k 1 VB/A/k 1
QA/k ®AB —— QB/k _— QB/A

—0

Proof. If M is a B-module, then the sequence
0 ———;DerA(B,M) —>Derk(B,M) — Derk(A,M)

is easily seen exact in view of (1.2,(i)). It follows that the

seguence

1

o— HomB(QB /A

1 , 1
,M)-——-aHomB(QBﬂ{,M) ——-)HomB(QA/kS) AB,M)
is exact. Therefore, the following lemma completes the proof.

Lemma_ (1.7). - Let B be a ring. A sequence
N'—f>N—gaN"—-—-—>O of B-modules is exact if (and only if) the
sequence O—> Hom(N",M)-— Hom({N,M)——Hom(N',M) is exact for all

B-modules M.

Proof. Since O3 Hom(N",coker (g)) —>Hom(N,coker(g)) 1is
exact, the canonical map N"—> coker(g) 1is O; so, g is surjective.
Since Hom(N" ,N")-3Hom(N,N")——Hom(N',N") is exact, idNogof = Q.
So there exists a canonical map h : coker(f)——>3N". Since
Hom (N" ,coker (£f) ) ——> Hom (N,coker (f)) —Hom (N?! ,coker (f)) is exact,

the canonical map N"—3 coker(f) yields an inverse to h, completing

the proof.
Theorem (1.8). - Let k be a ring, A a k-algebra, I an ideal

of A and B = A/I. Suppose the differential pair of A over k

exists. Then the differential pair of B over k exists and there



- 105 -

exists a canonical exact sequence of B-modules
2 % 1 1
1/1 -—’QA/k® AB ——)QB/k———-—ao

<] i i .
where is induced by dA/k

Proof. Let M be a B-module. Then the sequence
O-——»Derk(B,M)———>Derk(A,M)——-9HomB(I/12,M)

is easily seen exact. However, the sequence
0-——aHomB(coker(6),M)———;Derk(A,M)———+HomB(I/12,M) is also exact.

Therefore, Qg/k exists and is equal to coker(d).

Theorem (1.9). - Let k be a ring and B a k-algebra. Then

. . . 1 .
the differential pair (dB/k’QB/k) exists.

Proof. Since B 1is a quotient of some polynomial algebra

A = k[T], the assertion follows from {(1.4) and (1.8).

Lemma (1.10}. - Let k be a ring, A a k-algebra, ¢ an
A-module and d : A——>Q a k-derivation. Suppose that d(a)
1
generates Q and that there exists a map w : Q'—_’QA/k such that

dA/k =w o d. Then w induces an isomorphism,

(d ,Q)—A’)(dA/k 19;1/]{) .

Proof. Since d 1is a k-derivation, there exists a map

1
{ = w! o . i s
wt' QA/E*—~7Q such that 4 = w dA/k Since d(A) generates @

w! 1is surjective. By uniqueness, w o w' = id; hence, w' is also
injective.
Proposition (1.11). - Let k be a ring and A a
1
k-algebra. Then & i i i
9 a/k is generated by the differentials dA/k(f)

as f runs through any set of algebra generators of A over K.
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Proocf. Let Q Dbe the submodule of Qi/k generated by the
. . . R 1 .
dA/k(f)’ Then (1.10) implies that the inclusion w : Q———éQA/k is

an isomorphism.

Proposition (1.12). - Let k be a ring, Bl’ B, two k~algebras
and A = B ®B,. If d-= (dBi/k®1dA) + (de/k@)ldA) and Q =
1 1 . . . .
= (QBi/keblA)$(QB2/kxth), then (4,Q) is the differential pair of

A over k.

Proof. By (1.11), the image of & generates . By (1.5),

the canonical injections B,—~A induce maps u,= uA/Bi/k and, if
1
= + H @ = . ’
w u,+ou, Q———aQA/k, then clearly w d dA/k Hence, the

assertion follows from (1.10).

Proposition (1.13). - Let k be a ring, B a k-algebra and

B@&B. Let p : B& B—B be the map defined by p(fRgy) = fg,

b
"

g
[]

ker(p) and 4 : B~-—-9I/I2 the k-homomorphism defined by d(f) =
= 1Qf - f®1l. Then d is a k-derivation, the sequence
0—>1/1°—25 0t @ B—0t, —>0

A/K°A B/k

is exact and split, and(d,I/IZ) is the differential pair of B over k.

Lemma (1.14}. - Under the conditions of (1.13), I is generated

over B (via jl) by the elements of the form 1®f - f@1.

Proof. Clearly, 1®f - f® ¢ I for all f € B. If Zfixgie I,

then Zfigi = 0; so, Xfiggi = Z(fieﬂ)(lggi— gign).

In (1.13), 4 1is a derivation: d(fg) = 1®fg - fgl =
= (1Qf) (1®@g - g®l) +(g®l) (1®f - £®1) = fdg + gdf. By (1.14), 4(B)
2 s 1 1
generates I/I . 1In view of {(1.12), let pr, @ QA/kQAB_AM_’QB/k‘ be

the projection on the second factor and w = pr,e 6. Then, since
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0(18f ~ f®1) = ~-4f & df, it follows that w o d = dB/k' Hence,

(1.10) yields the assertion.

Remark (1.15). - {1.13) suggests an alternate existence proof:
direct establishment of universality of (d,I/IZ). Let D : B—M
be a k-derivation and define a k-homomorphism D' : BRB——M by
D'{f®g) = £fDg. Then D'(1®f - £@1) (183 - g®1)) = D(fg)~-fDg - gDEf+0=0;
hence, by (1.14), D'(Iz) = 0. Thus, D' induces a B~homomorphism

W o: I/I%-——eM and w(df) = w(1®f - f®1) = Df.

Example (1.16). - Let k be a ring and B = k[Ta] a poly-
nomial algebra. Then A = B@kB = k[Ta’UB]' Let Ua = Ta+ ha: by
(1.14), I/I2 is the B-module generated by the h_ = and, by (1.13),

2 1
o s i i i i -
: I/1 ——~9QB/k is an isomorphism defined by 6(ha) dTa. If
P(T) < B, then P(T+h)-P(1) =Y 21 + 0(h%) where o(h%) ¢ I°.
o

Hence, as in (1.4), Q;/k is the free B-module generated by symbols

4T and dP(T) =% 2— gr .
[e 8 [ 4

T Lot
a
Proposition (1.17). - Let k be a ring, Bl' 82 two k-algebras
and A = B,x B_. Then the differential pair of A over k is

1 2
@, o+d ol eaol )
s .
Bi/k B2/k B1/1< B2/k
Proof. The assertion results formally from the fact that the

category of A-modules is the direct product of the categories of

Bl—modules and B2—modu1es.

Propogition (1.18). - Let k be a ring, A, k' two k-algebras
1 . .
[ - ] : [ 4
and A Ag k'. Then (dA/k® id,,» QA/kghA } is the differential

pair of A' over k'.

. 1
. 1.11), = i T L !t =
Proof. By ( ) dA/kgkldA' dA/kgkldk’ A -—véQA/kehA

1 . : : .
= QA/k k' is a k'-derivation whose image generates. Furthermore,
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by (1.5}, dA'/k' = (VA'/k'/k° uA'/A/k%(dA/k®ldA')' Hence, (1.10)
yields the assertion.
Corollary (1.19). - Let k be a ring, B1’ B2 two k-algebras

and A = Blesz. Then the homomorphism Jqt Bl———éA, given

jl(b) = b®1l, defines a canonical sequence
Q0 —>Q ® A-——?Ql ———991 —>0
Bi/k By A/k A/Bl
which is exact and split.
Proof. By (1.18) Ql = 91 ®. A, so the assertion results
== ’ A/Bi B2/k B, ’

immediately from (1.12).

Proposition (1.20). - Let Xk be a ring, A a k-algebra and ¢

(resp. S) a multiplicative set in k (resp. A) such that ¢ maps

into §. Then the differential pair of s7'a over o'k is

(d,S_lni/k) where d(g) = (SdA/k(a) - adA/k(s))/sz.

1 1.1

Proof. The image of the k-derivation d : S~ A—sS QA/k
generates S_lﬂi/k by (1.11) The composition of the natural

homomorphism h : A-——ésnlA with 4 is a k-derivation;

- -1
S 1A/b k
so there exists an A-homomorphism w : Q1 ————991 such that
A/k -1, -
S "A/g 'k
1 . -1
d oh =w o d . Since @ is an S "A-module w
-1 -1 - - s
s tase™ 1k A’k s™la/c™
may be extended to w : S_lﬂi/i———’nl_i _, such that w . d =
S "A/o 'k
=d -1 -1 " Hence, the assertion results from (1.10).
S "A/u "k
Remark (1.21). - In geometric terms, this discussion may be

reinterpreted as follows. Let X be an S-scheme. By (1.20) and
. 1
1.9, . ) A
(1.9), there exists a canonical pair (dX/S,QX/S) consisting of a

quasi-coherent OX—Module Ql : O ———?Qi defined

X/S S$° X X/S

as follows: for each open affine subset V = Spec(k) of S and for

ana a map dx/
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each open affine subset U = Spec(A) of X 1lying over

1 1
x/sIU = (@

Q A/k)

and dX/SIU = (dA/k) . <

The O, -Module 91

v,

X/s is

called the gheaf of i1-differential forms and the map dX/S is called

the exterior differential. If X is locally of finite type over S,

then 91

X /S is of finite type by (1.11).

Let X and Y be S-schemes If £ ¢« X—>Y

an S-morphism,

then there exists a canonical exact sequence of OX-Modules

* .1 1 1
f Q. ,—Q ——-QQX/Y

Y/S X/S 70

by (1.6). 1If pry: XX Y—>X and pr,: X Y—Y are the

S 2° S

projections, then

1 * 1 1
* —_
Prily /s® Pryfy 5 = Qx><sy/s

by (1.12). Further, by (1.19) the canonical sequence

1
—_ *
Xx S Y/S pr

o anl 1
0—> prify o0 59y /g —0

is exact and split. Finally, by (1.17),

1

1 1
x/s ® %y

@ XWY/S®

= Q

Let i : X «—>Y be an immersion of S-schemes.
the sequence of Ox—Modules

2 o % 1 1
J/ T —i"Q ——mx/s

v/8 >0

is exact, where J 1is a sheaf of ideals defining X

Then, by (1.8),

in some neigh-

borhood and ¢ 1is induced by dY/S’ The OX-Module J/J2 is called

v
the conormal sheaf of X in Y and is denoted N(i).

If X is an S-scheme, then the diagonal morphism

A . « . . . .
X/S X—3X SX 1S an 1mmersion Let JX/S

sheaf of ideals. Then, by (1.13),

1

= 2 Y
Qx/s - ASkc/s(Jx/s/ Jx/s) - N(Ax/s) .

be a corresponding



- 110 -

Finally , let 8'—S be a morphism, X an S-scheme,

Xt = XXSS', and f : X'—3X the projection. Then, by (1.18), the
canonical map
%1 1
 —
£y /8 Oy /st
is an isomorphism.

2. Quasi~finite morphisms

Definition (2.1). - Let X and Y be schemes and f : X—>Y

a morphism locally of finite type. Then £ is said to be guasi-
finite if, for each point x ¢ X, 0x is a guasi-finite Oy—module,
i.e., if Ox/inyoX is a finite dimensional vector space over the

field ki(y).

Remark (2.2). - A finite morphism is quasi-finite.

Proposition (2.3). - Let X and Y be schemes and f : X——Y

a morphism locally of finite type. Let x be a point of X and
y = £(x). Then the following conditions are equivalent:
(i) 0x is a quasi-finite Oy-module.
(ii) x is isolated in its fiber; i.e., {x} is open in f—i(f(X)).
(iii) The following two conditions hold:
{(a) There exists a positive integer r such that m; < myox'
(b) The field k(x) is a finite algebraic extension of k{y)}.
Proof. We may assume that Y and X are affine with rings
Oy and A and that A 1is an Oy-algebra of finite type. Then
f_l(y) = Spec(B) where B = A/myA. Let I be the kernel of the
localization map B-——-)OX/myOx Since I is finitely generated,
there exists s ¢ mx/myB such that Is= 0; replacing B by Bs’ we

may assume B-——aox/myox is injective.
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Assume (i). Then B 1is a finite dimensional k(y)-vector
space; hence, by (II,4.5), B is artinian,So, by (II,4.7), f-l(y) is
discrete and (ii) holds. Further, by (II,4.7), (mx/myox)r= 0;
hence, (iii) (a) holds. Since k(x) is a quotient of ox/myox,

(iii) (b) holds.

Assume (ii) holds. Replacing X by a suitable neighborhood
-1 .
of x, we may assume f “(y) = {x}. Then B = 0,3 so, ox/myox is of
finite type over k(y) and has only one prime ideal. Hence, by
(11, 4.7), (i) holds. Finally, by (II,4.6) applied to Ox/hyox,

(iii) implies (i).

Proposition (2.4). - Let X and Y be locally noetherian

schemes, £ : X—>Y a morphism locally of finite type, x a point
of X and y = £(x). Then 0x is quasi-finite over Oy if and

only if Ox is finite over O

Proof. If 0x is quasi-finite over Oy, then there exists a

surjection ¢! : k(y)n-———aox/'myox for some integer n > 0; lift o'

to a map ¢ : 0;———90x. By (2.3), there exists an integer r > O

such that m" ¢ myox' Hence, it follows from (II,1.19 and 1.20 (ii))

that ¢ : O ———aox is surjective.

Conversely, assume there exists a surjection a : 63———96x
for some n > 0. Then, by (II,1.19)a induces a surjection

k(y)q——~+k(x). In view of (2.3), ﬁi 4 ﬁyax for some r and we are

reduced to proving the following lemma.

Lemma (2.5). - Let A~—>B be a local homomorphism of

noetherian local rings and m, n the maximal ideals. Suppose that

-~

X AA b
n ¢ mB., Then n ¢ mB.
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Proof. Consider the map B : nr;——eB/mB; by (11,1.419), B8
induces a map B ﬁ{———aﬁ/ﬁﬁ. By hypothesis, B = 0; hence, by

(I1,1.15),8 = 0. Thus, nf ¢ mB.
3. Unramified morphisms

Definition (3.1). - Let X and Y be locally noetherian
schemes, f : X—3>Y a morphism locally of finite type, x a point of
X and y = f£f(x). Then £ (resp. OX/Oy) is said to be unramified at
x if m = myox and k(x) is a finite separable field extension of
k(y), (i.e., if ox/myox is a finite separable field extension of k(y)).

Lemma (3.2). - Let k Dbe a field, K an artinian k-algebra
of finite type and k the algebraic closure of k. If ngi is
reduced, (i.e., without nilpotents), then K is a finite product of

finite separable field extensions of k.

Proof. By (11,4.9), K = HKi where Ki are artinian local

rings. Replacing K by Ki, we may assume X is local. Since
the maximal ideal of K is nilpotent, it is zero and thus K is

a field which is finite over k by (II,4.7).

Let o be an element of K and £(T) its minimal polynomial
r,
over k. Then k(a) = k[T]/£(T); so, k(a)@ki = nE[T]/fi(T) 1 where
the fi(T) are the distinct linear factors of f£(T). By hypothesis,

k{a)@ki is reduced. Hence, all r;=1; so, a is separable.

Proposition (3.3). -~ Let X and Y be locally noetherian
schemes, f : X—>»Y a morphism locally of finite type and x a point

of X. Then the following conditions are equivalent:

. 1 .
(i) QX/Y is zero at x
(ii) AX/Y is an open immersion in neighborhood of x.

(iii) f is unramified at x.
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Proof. Assume (i) holds. Let J Dbe the sheaf of ideals
defining the diagonal in a neighborhood of itself and identify x
. i 2
A . > - s = = . ¥
with x/Y(x) Then, by (1.13) o (QX/Y)x (/3 )x Hence, by

Nakayama's lemma, Jx = 0 and (ii) holds.

Asgume (ii). To prove (iii), we may assume that Y =

-1 R
= Spec(k(y)), £ “(y) = X = 8Spec(d) and that AX/Y : x-—9xxYx is
an open immersion. Let k be the algebraic closure of k(y). 1If

At = A@k(y)k is proved isomorphic to a finite product Ik, then A
will be finite dimensional over k(y) and (iii) will result from

{3.2).

Replace Y by Spec{(k) and X by X@&k. Let 2z be a

closed point of X. Then by (II1I,2.8), Oz/'mz = k.

Consider the morphism g = (idx,hz) : X-——éXxyx, where

hZ: X—>X 1is the constant morphism through =z, (defined by the
composition A———ak(z)-:;ekC——eA). Then, since the diagonal subset
is open, g’l(A) = {z} is open. Thus, all closed points of X are
open; so, all primes of A are maximal. Hence, by (II,4.7), A is
artinian and X consists of a finite number of points. Then, by
choosing X small enough, we may assume X consists of a single
point and A = o, - Since A

X/Y

is an isomorphism. Hence, dimk(A) =1 and A = k.

is an open immersion, A@kA———aA

Assume {iii). To prove (i), we may assume Y = Spec(k{y))
X = f-l(y) in view of (1.18). By (2.3) x is isolated in X. Hence,
we may assume X = Spec(k(x)). Thus, we are reduced to proving the

following lemma.

Lemma (3.4). - If L is a finite separable field extension

of K, then 91

LK O
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Proof. Let D : L—3M Dbe a K-derivation. Let a ¢ L and
£(T) be the minimal polynomial of a over K. Then f(a) = 0;

hence, f'{a)D(a)

i

0. Since a 1is separable over K, f'(a) # O.

Therefore, D{(a) 0.

il

Proposition (3.5) (Le sorite for unramified morphisms). -

(i) Any immersion is unramified.

(ii) The composition of unramified morphisms is unramified.
(1ii) Any base extension of an unramified morphism is unramified.
Consequently,

(iv) The product of unramified morphisms is unramified.

(v) If geof is unramified, then £ is unramified.

(vi) If f is unramified, then fred is unramified.
Proof. Assertions (i) and (ii) are immediate from the defini-

tion. Assertion (iii) follows from (3.3 (i)) and (1.18).

Proposition (3.6). - Let X and Y Dbe locally noetherian

S-schemes and f : X-—3»Y an S-morphism locally of finite type.
Let x be a point of X and s 1its projection on §. Then:

(i) £ is unramified at x if and only if the canonical map

* 1 1
—>
£y s %5

{(ii) £ is unramified at x if and only if f@%k(s) : X@%k(s)——e&@gk(s)

is surjective at x.

is uynramified at x.

1 1 1 .
3 £ — U
Proof. Since the sequence £ QY/é—_*QX/S X/Y G is

exact by (1.6), (i) results from (3.3). Assertion (ii) follows

immediately from the definition.

Proposition (3.7). - Let X and Y be locally noetherian

schemes, f : X——Y a morphism locally of finite type, x a point

of X and y = f£(x). Then f is unramified at x, if and only if
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ax/ay is unramified. Further, suppose that k(x} = k(y) or that
k(y) is algebraically closed. If £ is unramified at x, then

6y———>6x is surjective.

Proof. Assume 6x/6y is unramified. Then #f_=m O_. By (2.5),

m_ ¢ m O ; hence, m_= . By (11,1.129), k(x)/k(y) 1is separable;

X VX myox
thus, £ is unramified at x. Conversely, if f is unramified at x,
then, by (II,1.19)}, 6x/6y is unramified. 1If, further, k(y) is
algebraically closed, then, since k(x)/k{y) is finite, k{x) = k{y).
Therefore, in either case, k{y)—s3k(x}) is bijective. Hence, by

(11,1.20), Oy———->0x is surjective.
4. Etale morphisms

Definition (4.1). - Let X and Y be locally noetherian

schemes and £ : X——Y a morphism locally of finite type. Then £
(resp. ¢ : Oi———90x, Ox/Oy) is said to be étale at x ¢ X if £ 1is
flat and unramified at x.

Example (4.2). - Let k be a field and f : X-—> Spec (k)
n

an étale morphism. Then X = ._lL Spec(ki) where the k, are finite
i=1
separable extensions of k.

Proof. By (2.3), X is an artinian scheme; hence, since f is

unramified, Ox is a finite separable field extension of k for

each x € X and X =JlSpeC(Ox).

Proposition (4.3). - Let X and Y be locally noetherian

schemes and f : X——Y a morphism locally of finite type. Then £

is étale at x € X if and only if 6x is étale over 6f{x)'

Proof. The assertion holds with "étale" replaced by "flat"

(v,3.3) or by "unramified" (3.7).
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Proposition (4.4). - Let X and Y be locally noetherian schemes
and £ : X~—3Y a morphism locally of finite type. Suppose f is flat
and quasi~finite at x € X. Then 3 3 6f(xy———a»6x is injective

and finite.

Proof. By (Vv,3.3) and (2.4), $ is flat and finite; whence, by

(v,1.6) and (v,1.9), $ is injective.

Corollar 4.5). - Let X and Y be locally noetherian
schemes, f ¢ X~3Y a morphism locally of finite type, x a point
of X and y = f£(x). If ® : 6§-”—’6x is an isomorphism, then £
is étale at x. Conversely, suppose that the residue extension

k{x)/k(y) is trivial or that k(y) is algebraically closed. If £

is étale at x, then ¢ is an isomorphism.

Proof. By (4.3), if p is an isomorphism, then Ox is étale
over Oy. Conversely, if f is étale at x, then & is injective

by (4.4) and surjective by (3.7).

Proposition (4.6). - Let X and Y be locally noetherian

schemes and £ : X—Y a morphism locally of finite type. If £

is étale at x € X, then £ is étale in a neighborhood of x.

Proof. The assertion holds with "étale"” replaced by "flat"

{(V,5.5) or by "unramified" (3.3).

Proposition (4.7) (Le sorite for étale morphisms). -

(i) An open immersion is étale.

(ii) The composition of étale morphisms is édtale.
{(iii) Any base extension of an étale morphism is étale.
{iv} The product of étale morphisms is détale.

{v) If gof is étale and if g is unramified, then £ is étale.
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Proof. Assertions (i), (ii), (iii), and (iv) each hold with

“étale"” replaced by "flat" (V,2.7) or by "unramified" (3.5). As to

(v) , consider the diagram with cartesian squares:

A
O Te
pr,
XX Y Y
e -
geof

Since g o £ is étale, pr, is étale by (iii). Since a is an

Y/S
open immersion by (3.3), Pf is étale by (i) and (iii). Therefore,
f = prye T is étale by (ii).

Proposition (4.8). - Let S be a locally noetherian scheme, X

and Y two schemes locally of finite type over S8 and £ : X——=Y
an S-morphism. Let x be a point of X and s its image in S.
Suppose X and Y are flat over S. Then f 1is flat {resp. étale)

at x if and only if fs= f@bk(s) is flat (resp. étale) at x.

Proof. The first assertion follows from (V,3.4); the second,

from the first and (3.6(ii)).

Proposition (4.9). - Let S Dbe a locally noetherian scheme, X
and Y two schemes locally of finite type over 5 and f : X——¥
an S-morphism. If £ is étale, then the canonical map

1

*x1
£ QY/s 5Qx/s

is an isomorphism.
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Proof. Consider the diagram with cartesian square

&
/Y g Y v
X —7XXYX — XASX
L ;
h h fof
f
_— sy
Y R Y\SY
Y/8
. . . 1
By (3.3), AX/Y is an open immersion. Hence, by (1.21), QX/S =
= ﬁ(g'o a,,,) = a* (N(g")) By the lemma below, N(g') = h* (N (4, /)
X/Y X/Y . ’ Y/S,
v ~ 1 . .
and, by (1.21}), N(AY/S) = QY/S’ whence, the assertion.
Lemma (4.10). - Consider a cartesian diagram
gf
p QT S —
h' h
A e I §
9

where g and g' are immersions of schemes. If h isflat, then the

v
induced map on conormal sheaves h'*N(g)—————bﬁ(g') is an isomorphism.

Proof. Let J be the quasi-coherent sheaf of ideals defining
X as a subscheme of Y in a neighborhood U of X. Since h is

flat, the sequence

0—>JQ, O,,—>0,,,—>0,, o
Y
is exact; hence, J' = Jsb Oy, is the ideal defining X' in h-l(U).
Y

Therefore the diagram

e
(J®OYOY' )®OY' (g@oYoy, ) ___.;JQDYOY «—> N{g) @aOYoY,-——» ¢]

§ §

Jt®. J¢ 57" >N {g!) ——>0
0y,

yvields the assertion.
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5. Radicial morphisms

Definition (5.1). - A morphism f : X——>Y of schemes is said

to be radicial if it is injective and if, for all x € X, the residue

extension k(x)/k(f(x)) is purely inseparable (radicial).

Proposition (5.2). - Let £ : X——Y Dbe a morphism of schemes.

The following conditions are equivalent:

(i) £ 1is radicial.

(ii) For any field XK, the map of K-points f£f(K) : X(K)——3¥(K) is
injective.

{(iii) (Universal injectivity) For any base extension Y'Y, the
morphism fy,: XXYY‘—>Y' is injective.

{iv) (Geometric injectivity) For any field K and any morphism

Spec (K) —3Y, the morphism £t XQK— Spec(K) is injective.

Proof. Assume (i) and for some field K, let

ugsUy: Spec(K)===2X satisfy fou1= fouz. Since £ is injective,

X = Im(u1) = Im(uz). Hence, u, ,u, corresponds to k (£(x)) ~homo~-

2
morphisms k(x)——3K. 8ince k(x)/k(£f(x)) is purely inseparable,

u,=u end (ii) holds.

1 2

Conversely, assume (ii) and suppose k(x)/k(£(x)) were not
purely inseparable for some x € X. Then there would exist two
different k(f(x))~-homomorphisms of k(x) into some field K. Let
ug, U, Spec (K)===3X be the corresponding morphisms. Then

feu,= feu

1 5 but uy # u,-

Suppose f(xl) = f(xz) = y for distinct points Xy Xy

Then there exists a field K and two X (y)-homomorphisms k(xl)-—~9K

and k(xz)-——aK. Let uy, u Spec {K)——=X be the corresponding

2:

morphisms. Then fou1= fouz, but w, # u,- Therefore (i) holds.



- 120 ~

Assume (ii). Then the diagram

X (K) x Y (K)

(xxYY') (K) Y(K)

Y (K) Y (K) x Y' (K)

Y (K)

shows that fY' also satisfies (ii). So, by (ii)= (i), f£ is

Yt
injective and (iii) holds. The implication (iii)==H(iv) is trivial.

Assume (iv) and, for some field K, let Uyl € X(K) satisfy
fou

= fou2. Then u and u give rise to sections

1 1 2
ui,ué : Spec(K):::$X€&K.

XBK — L s speciR)

Since f' 1is injective, XK&K consists of a single point. It follows

that ui = ui, so u, = u,. Thus, (ii) holds and the proof is complete.

Proposition (5.3 Le sorite for radicial morphisms). -
(i) Any immersion, {in fact, any monomorphism), is radicial.
(ii) The composition of radicial morphisms is radicial.

(iii) Any base extension of a radicial morphism is radicial.

Consequently,

(iv) The product of radicial morphisms is radicial.
(v) If gof is radicial, then £ is radicial.

{vi) If £ is radicial, then fred is radicial.

Proof. Assertions (i), (ii) and (iii) follow immediately from

(5.2).
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Lemma (5.4) .- Let B be a noetherian ring and S a multipli-
cative subset. Suppose the canonical map B-——es-iB is surjective.

Then for a suitable ring, C, the rings B and S—lB x C are isomorphic.

Proof. 8ince the kernel I of B-——9S_1B is finitely generated,
there is an s € 8§ such that sI = 0. Therefore, U = Spec(SmiB) is
an open subscheme of X = Spec(B). Since B-——os-lB is surjective,

U is also closed.

It follows that there exists a ring C such that the open

subscheme X - U is equal to Spec(C). Then, B = S 1B x C.

Theorem (5.5). -~ Let X and Y be locally noetherian schemes.

Then a morphism f : X———>Y 1is an open immersion if (and only if} £

is étale and radicial.

Proof. Since f is flat, it is open by (V,5.1). Since £ |is

also injective, it is a homeomorphism onto its image. It remains to

show that, for each x ¢ X, the map of(x————>0x is an isomorphism.
Set A = of(x) and B = OXbe(x)Of(x). Since A is faithfully flat

over Of(x)’ it suffices to show that A——B is an isomorphism

Let m be the maximal ideal of A and n a maximal ideal of
B containing mB. Then A-——-)Bn is a local homomorphism and is
étale andradicial by (4.7) and (5.3). Since the residue extension of

B ~over A is both separable and purely inseparable, it is trivial.
Consider the commutative diagram

A —— B
n

|

~

85— B
n

The map 3——-9§n is an isomorphism by (4.5) and Bn~—~9§n is injective
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by (1I1,1.15). Hence, A—¥:>Bn—:¥9§n and B ——7Bn is surjective.
Therefore, by (5.4), for a suitable ring C, B = A X C. However, B
is radicial over A, so Spec(B)——Spec(A}) 1is injective; hence,

Spec(C) =g, C = 0, and A——B.

Corollary (5.6). An étalemonomorphism is an open immersion.

Proposition (5.7). - Let S be a locally noetherian scheme,
X and Y two schemes locally of finite type over 8§ and f : X—>Y
an S-morphism. Suppose X and Y are flat over S$. Then, £ is an
open immersion if and only if f@ék(s) s Xﬂék(s)-—qu@sk(s) is an open

immersion for all s € S.

Proof. The assertion holds with "open immersion" replaced by
"étale morphism" (4.8) and by "radicial morphism" (5.1)3; hence, the
assertion follows from {(5.5).

6. Covers

Definition {6.1). - Let X, Y be locally noetherian schemes

and £ : X——Y a morphism locally of finite type. Then X is said

to be a (ramified) cover of Y (resp. f is said to be a govering

(map)) if £ 1is finite and surjective; X is said to be an unramified
(resp. flat, étale) cover of Y if, further, f is unramified (resp.

flat, étale).

Proposition (6.2). - Let X, Y Dbe locally noetherian schemes.

If X is a cover of Y, then dim(X) = dim(Y).

Proof. It is clear that dim(X) = sup{dim(ox)}. Hence, replac-
ing Y by an open subset U {resp X by f—i(U)), we may assume that
Y (resp. X) is affine with ring A (resp. B) and that B is a finite
A-module. Then, it follows by induction from {(III,2.2) that

dim(B) = dim(A).
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Definition (6.3).- Let X, Y be locally noetherian schemes and

f : X—>Y a morphism locally of finite type. The set of points of

X where f 1is ramified is called the branch locus of X over Y.

Remark (6.4). - The branch locus of X over Y has a natural,
. i 1
closed subscheme structure defined by the annihilator 1};/Y of QX/Y’

v

X/Y is often called the Kihler different of X over Y.

Remark (6.5). - Let A be a ring, E a finite, free A-module
and h : E—>E an A-homomorphism. If M(h) is the matrix of h
with respect to some basis, then the trace of h, denoted tr(h), is
defined as the sum of the diagonal elements of M(h) and is clearly
independent of the choice of basis If ¢ : A—>»B is a ring
homomorphism, then E@kB is a free B-module, h®idB: E@hB-——aEghB

is a B-homomorphism and tr(h@idB) = gp(tr(h)).

Let X bDbe a cover of Y and F a coherent Ox—Module, flat
over Y. Then the trace of an endomorphism g of F may be
defined. Namely, by (V,2.8), there exists an open affine cover v,

of Y such that f,.,F]v is free and the elements
a

tr(gl_1 ) € F(Va,OY) piece together to give an element
£f (V)
¢4
tr(qg) GP(Y,OY). Furthermore, a map Tr : End:Y(f*F)———eoY exists

where Tr (g) is the trace of g]v. In particular, if X is a flat

cover of Y, then Trx/Y H f*OX———eoY is defined as the composition
of the canonical map £,0,— End Y(f*OX) with Tr.
There exists a map associated to Trx/Y’
v
u = astrx/Y : f*OX———ﬁ(f*OX) = Hom (f*Ox,OY),

Y

defined as follows: For an open set V of Y and elements

a,b e P(f_i(V),OX), let uv(a) be the map taking b to
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max

(Tr (ab) € F(V,OY). Let A £,0 denote the invertible sheaf

x/Y) v p
equal to Arf*oX where f40, has rank r. Then the section

A%y Hom(Amaxf*ox,Amax(f*Ox)v) is called the discriminant and is
. . max max .
denoted dX/Y' The image of dX/Y®ld : A f*Oxgm f*OX———aoy is

called the discriminant ideal and denoted D . The set of points

X/Y

of Y where D is not equal to 0Y is called the discriminant

X/Y

locus.

Proposition (6.6). - Let X, Y ©be noetherian affine schemes

with rings B, A and suppose B is a finite, free A-module. Then
the following conditions are equivalent:

(i) X is an étale cover of Y.

(ii) The pairing (a,b)k——etrB/A(ab) is nonsingular.

(iii) The discriminant ideal D is equal to A.

X/Y

Proof. The equivalence (ii)%&=> (iii) follows easily from the

definitions. Since X 1is a flat cover, it is étale if and only if it
is unramified; hence, by (3.6), if and only if for every v ¢ Y, the
n-dimensional k(y)~algebra B@kk(y) is separable (unramified over k(y)).
Let k be the algebraic closure of k(y). By (6.5), the trace
commutes with the base extension A-—3k; so, we may assume A = k

r

and, by (11,4.9), B = ni=1Bi where the B, are artinian local rings.

Since trB/A = Ztr , we may assume r = 1; then, by (3.2),(3.3) and

Bi/A
(3.4), it remains to show that the pairing is nonsingular if and only

if B is a field.

Let m be the maximal ideal of B. By (II,4.7), there exists
an s such that m° = 0, but ms—1 #0. If s =1, then B =%k and
trB/A(ab) = ab 1is clearly nonsingular. If s > 2, then since
B =% ®m, it follows that trB/A(y) =0 for all vy ¢ ms-i. Let x

be a nonzero element of ms-l. Since xb € ms_1 for all b ¢ B,
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trB/A(xb) =0 for all b € B; so, the pairing is singular.

Lemma (6.7}. - Let B be a semilocal ring and ml,...,mr the
maximal ideals of B. Then B = Hﬁm .
i
Proof. Let g be an ideal of definition. It follows from

(I1,4.9) that B/qr = II(B/qr)m = HBm /qum . Therefore, by
R i i i

(11,1.8), B = 1B .
My

Theorem (6.8) (Purity of the branch locus). - Let X and Y be

locally noetherian schemes. If X 1is a flat cover of Y, then the

branch locus of X and Y has pure codimension 1.

Proof, Let x be a ramified point of X and y = f(x). It
suffices to show that 190x/by is contained in a height 1 prime of

O,- Let B be the affine ring of XXYSpec(Oy). Then B is a finite

Oy-module; hence, a semilocal ring with radical myB {2.3). By

{11,1.18) and (6.7), Bﬁb 8 =8 = Hﬁx where X; runs through the

y ¥ i

. -1 a 9. . -
points of £ “(y) and, by (1.18) and (1.17), 193/0 0y "19B/0
t? Yy Yy
=@ 5 /6 ;s hence, ﬁya /6 = 190 /0 Oy. Therefore, by (V,3.3) and
7y x Ty x' Ty

(II1,1.8), we may assume O_ = O_ and O =08 .
x x Yy Yy

By (2.4), 0x is a flat cover of Oy; but, by (3.7), not étale.

Hence, by (6.6), C my. Therefore, by (I111,1.10 and 5.8), DO /0 cp
Xy

D
OX/Oy

where p 1is a height 1 prime of Oy. By (6.6), o, is not étale
over 0Y at some prime g of 0x lying over p. By (v,2.10), g

has height 1; whence, the assertion.

Lemma (6.9). - Let A be a ring, B an A-algebra and let t ¢ B

generate B over A. If P € A[T] 1is a polynomial such that

d .
= 1 ] = —— .
P(t) 0, then 1§B/A > P'(t)B where P'(T) T P(T); furthermore, if

the natural map A[T]/PA[T]—>B is an isomorphism, then‘¢%/A= Pt (t)B.
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Proof. The canonical map A[T]—>B is surjective; let I be

its kernel. By (1.8), the seguence

2 1 1
1/1 "—’QA[T}/Z@AB -—>QB/A—-———>O
H ; 1 .
is exact. Sinc b A4, = ,
. ince, by (1.4) QA[T]/A®AB BAT, it follows that
- d
QB/A = B/a(I1)B where d(I1) ={EE Q(T)] Q(T) € I}. Hence, d(I)B =
t $ = = t
’IQB/A. Thus, 193/1\.’ P'(£)B and, if I = PA[T], then d(I)B = P'(t)B;
= pt
SO B/A P'(t)B.
Proposition {6.10). - Let A be a ncetherian ring, B an

A-algebra, q a prime of B and p the trace of g in A. Suppose
there exists a polynomial P(T) and an element t ¢ B such that the
map A[T]/PA[T]—>B defined by t 1is an isomorphism. Then Bq is
unramified over AP if and only if (P,P‘)APIT] = AP{T}. Suppose,

in addition, that the leading coefficient of P is invertible. Then

Bq is étale over Ap if and only if P'(t) £ q.

Proof. Since, by (6.9),'¢1/A = P'(t)B, it follows by (6.4) that
Bq is unramified over Ap if and only if P'(t) is a unit in Bq;
hence, if and only if (P,P')AP[T] = Ap[T]. The second assertion
follows from the first since, if the leading coefficient of P is
invertible, then B is the free A~module generated by 1,t,...,tn_1

where n = deg(P).

Definition (6.11). - Let A be a ring. A polynomial P e A[T]

is said to be separable if it satisfies the following two conditions:
{(a) The leading coefficient of P is a unit in A.

{b) {p,P")A[T] = A[T].

Theorem (6.12). - Let A be a noetherian local ring, m the

maximal ideal and k = A/m. Let B be a finite A~algebra, K = B@kk

and r = [K:k]. Suppose either that k is infinite or that B is
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local. Then B is étale (resp. unramified) over A (if and) only if

B is isomorphic to an étale algebra of the form A[T]/PA[T] (resp. a

quotient of A[T]/PA[T]) for some separable polynomial P of degree r.
Proof. It follows from the hypothesis that there is a primitive

r-1

element u ¢ Kj say, 1,u,...,u form a basis for K over k. Let

t € B be an element whose residue class is wu. By Nakayama's lemma,
r-1 .

1,t,....tr 1 generate B. If t¥ = E aitl, then let P(T) =

r i i=0
=T -EZ a,T". From (6.10) applied K/k, it follows that
(p,P*)A[T] = A[T] mod mA[T]. Hence, by Nakayama's lemma, (P,P')
generates A[T], so P is a separable polynomial. Finally, if B/A
is étale, the assertion follows from (4.7) and (5.6) applied to the

surjection A[T]/PA[T]—>B.



Chapter VII - Smooth Morphisms

1. Generalities

Definition (1.1). - Let X and Y be locally noetherian
schemes and f : X——>Y a morphism. Then X is said to be smooth

over Y at x € X (resp. £ is said to be smooth at x) if there

exists a neighborhood U of x and a commutative diagram

u—3F AL =AT » Y

flu \
Y

where g is étale and p is the projection on the second factor.
(The morphism p is sometimes called a polynomial morphism). The
scheme X is said to be smooth over Y (resp. £ is said to be smooth)

if f is smooth at every x € X.

Remark (1.2). - The points x € X at which a morphism

f : X——Y is smooth form an open set.

Definition (1.3). - Let f : X——Y be a morphism of schemes

and x a point of X. The relative dimension of X over Y at x

(resp. of f at x) is defined as the largest dimension of the
components of f—l(f(x)) passing through =x and is denoted dimx(x/Y)

(resp. dimx(f)).

Proposition (1.4). - In the definition of smoothness,

n = dlmx(f)

Proof. Changing the base, we may assume, by (VI,4.7), that
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Y = Spec(k(y)) where y = £(x). Then since dim(AQ by

k(y)) =P
(111,2.6), the assertion follows from (V,2.10) and (VI,2.3) applied to g.

Remark (1.5) . -~ If f : X—>Y is a quasi-finite morphism, then

dimx(f) =0 for all x € X.

Proposition (1.6). - Let X, Y be locally noetherian schemes.
A morphism f : X—Y is étale if and only if it is smooth and

quasi-finite.

Proof. As f is quasi-finite, dimx(f) =0 by (1.5); hence,

the assertion follows from the definition of smoothness and (1.4).

Proposition (1.7). {(le sorite for smooth morphisms). ~-

(i) An open immersion is smooth.

(ii) The composition of smooth morphisms is smooth.
(iii) Any base extension of a smooth morphism is smooth.
Consequently,

(iv) The product of smooth morphisms is smooth.

Proof.
(i) An open immersion is étale.
(ii) Since smoothness is local on X, it suffices to consider a

commutative diagram with cartesian square

X

\Y <> \& a{;,‘5‘11-%‘1'{1
zﬁ\g

v /

Z

Since h' is a base extension of h, h' is étale; so, since g is

étale, h's g is étale by (VI,4.7).
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(iii) Again, it suffices to consider a commutative diagram with

cartesian squares.

xr 9 > Agr B' oy
9 ¥ Y
X }ﬂ&? P >Y

Since g is étale, it follows by (VI,4.7) that g' is étale.

Theorem (1.8). - Let X, Y be locally noetherian schemes,
f + X——Y a morphism locally of finite type, X a point of X and
y = f(x). Then f 1is smooth at x if and only if the following two

conditions hold:
(a) £ 1is flat at x.

{b) f-i(y) is smooth over %k = k(y) at x.

Proof. If f is smooth at x, then (b) holds by (1.7). Since
an étale morphism and a polynomial morphism are each flat, £ is flat

by (v,2.7).

To prove the converse, we may assume that X, Y are affine
with rings B, A, and that there exists a factorization of

- g9
fy, £ 1(y)___¥;,AA£-_¢Spec(k) where gy is étale. 1If gy is

defined by n functions g .e¢ ngk' then replacing gy i by ag
’

y,i y,i

for a suitable a ¢ k, we may assume that the gy ; are images of

functions g;¢ B. Then we have the commutative diagram with cartesian

squares

X@k v > Spec (k)
P8k P

L] L]

1%
X"-_-—’ ‘;\Y -——————)Y

where g is the morphism defined by the g;¢€ B. Since X and 4&;
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are flat over Y and gy is détale, it follows from (VI,4.8) that

g is étale.

Corollary (1.9). - Let S be a locally noetherian scheme, X,¥Y
schemes locally of finite type over S. Let £:X -+ Y be an S-morphism, x a

point of X with image s ¢ S. Suppose Y 1is flat over S. Then f
is smooth at =x if (and only if) the following two conditions are
satisfied:

{a) X 1is flat over S at x.

(b) £ : X—Y is smooth at x.
s s s

Proof. By (VIi,4.8), £ is flat at x. However, fy= fs®Yk(y)s

50, f_l(y) is smooth by (1.7) and the assertion follows from (1.8).

2. Serre's criterion

Definition (2.1}. - A locally noetherian scheme X 1is said to

satisfy condition Rk if X is regular in codimension < k or, equi-
valently, if the singular locus has codimension > k; X is said to

satisfy condition Sk if, for all x € X,

depth(Ox) = inf{k,dim(ox)}.

A noetherian ring A is said to satisfy Rk (resp. Sk) if X = Spec(a)
satisfies R (resp. Sk). A locally noetherian scheme X is said to

satisfy Rk (resp. Sk) at x if 0X satisfies Rk (resp. Sk).

Proposition (2.2). - Let X be a locally noetherian scheme.

Then:
. ' > . . . .
(1) If k' 2 k, then S, , implies S, and R, implies R.
(ii) X satisfies sk for all k if and only if X is Cohen-Macaulay.

(iii) X satisfies Rk for all %k if and only if X 1is regular.

{iv) X satisfies S, if and only if X has no embedded components.

(v) X satisfies RO if and only if X 1is generically reduced

(i.e., reduced in a neighborhood of each generic point).
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(vi) X satisfies RO and S1 if and only if X 1is reduced.

Proof. Assertions (i), (ii) and (iii) are trivial. To prove
(iv) , note that X satisfies s, if and only if depth(ox) > 1 for
all x € X which are not generic points. On the other hand,
depth(ox) =0 if and only if x € Ass(ox) by (III,3.11). Hence, X
satisfies S1 if and only if every x ¢ Ass(OX) is generic, i.e.,

if and only if X has no embedded components.

To prove (v), note that X satisfies RO if and only if X
is generically regular and that X 1is generically regular if and
only if X 1is generically reduced. Finally, to prove {vi), it

suffices, in view of (iv) and (v), to prove the following lemma.

Lemma (2.3). - A locally noetherian scheme X is reduced if

and only if it is generically reduced and has no embedded components.

Proof. Since the statement is local, we may assume X 1is
affine with ring A. Then, by the weak Nullstellensatz (I1I,2.8), A
is reduced if and only if O = ﬂpi where the p; are minimal primes.
However, by (11,3.17), {pi} is an irredundant primary decomposition
of O if and only if each Ap is reduced and all essential primes

i
of O are minimal.

Definition {(2.4). Let A be an integral domain with quotient

field K. Then A is said to be a discrete (rank 1) valuation ring if

A ={x ¢ K|v(x) 2 0} U {0} where v is a surjective function from

K*

to Z satisfying:
(i) vixy) = v(x) + v(y) for all x,y € K*.
(ii) vi(x+y) 2 inf{v(x),v(y)} for all =x,y € K*.

An element t € A 1is called a uniformizing parameter if v(t) = 1.
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Lemma (2.5). -~ Let A be a discrete valuation ring and t a
uniformizing parameter. Then every nonzero ideal I of A is
generated by tr for some r 2 O3 in particular, A is a local

noetherian domain.

Proof. Let vy € I have the property that r = v(y) is minimal,
and let u = y/tr. Then v{u) = 0, so u is a unit of A. Hence,

tf = u—ly € I. If x € I, then x = tTx' where v(x') 2 0. Hence,

I = tfa.

Proposition (2.6). -~ Let A be a local noetherian domain with
maximal ideal m. Then the following conditions are equivalent:
(i) A is a discrete valuation ring.
(ii) A 1is principal and is not a field
(iii) A is normal (i.e., integrally closed in its quotient field)
and dim{a) = 1.
{iv) A is normal and depth{(a) = 1.

(v) m = tA for some nonzero t € A.

Proof. The implication (i) == (ii) follows from (2.5) and
(ii) = (iii) is easy. Since A is a domain, depth(A) = 13

so, by (III,3.15), (iii) == (iv).

Assume (iv). Then there exists an element x € m such that
m € Ass{A/xA) Dby (111,3.10) and 3.11). Hence, there exists vy € A,
-1 -1
y £ *xA and such that my ¢ xA. Then myx ¢ A and yx = £ A.
It follows that myx—1 = A. For, otherwise, myx—1 ¢m and, since
m is finitely generated, yx“1 would be integral over A. Since
A is normal, yx_1 would be in A. Hence, there exists t e m such
- - -1
that tyx 1. Now, if z € m, then t{yx 1z) =z and yX "z € Aj

hence (v) holds.
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Assume (v). If y e mt- mr+1’ define v({y}) = r. S8ince, by

Krull's intersection theorem (II,1.15), Nm'= O, v(y) is defined for
all nonzero y in A. Clearly, v(x+y) 2 inf{v(x),v(y)} for any
X, y € A. Further, since mt = trA, if wv({y) =r, then y = ut®  for

u € A* and it follows that vi{xy) = v(x) + v{(y); so, A is a discrete

valuation ring.

Proposition (2.7). - Let A Dbe a noetherian ring which is
reduced and integrally closed in its total quotient ring K. Then A

is a product of normal domains.

Proof. By (2.3), O has no embedded essential primes; so, by

(11,3.17 and 4.7), K is artinian. By (II,4.9}), K = HKi where the Ki

are fields. 1If e, = {(0,...0,1,0,...0) with 1 in the ith place,
then ei e, = 0; so, since A 1is integrally closed, e;¢ A. There-

fore, A = HAei.

Lemma (2.8). - If a local ring A has the form A = Aix"’XAr’

then r = 1.

Proof. Let m be the maximal ideal of A and e;=
= (0,...,0,1,0...,0) with 1 in the ith place. If r > 1, then
eiej =0 for i1 # j; so, all e e m; hence, 1 = e, + ... + e € m,

a contradiction.

Corollar 2.9). - A reduced noetherian local ring which is

integrally closed in its total quotient ring is a normal domain.

Lemma (2.10). - Let A be a noetherian ring and K its total
quotient ring. If p runs through all primes such that depth(Ap) =1,

then the sequence A-——9K-2—¢HKP/AP is exact.

Proof. Let b ¢ A be a non-zero-divisor. If p is an essential
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prime of bA,then, by (11,3.9,I11,3.10 and II1I,3.11), depth(Ap) = 1.
Thus, if a/b € ker(u), then a ¢ bAp for all essential primes of bAj;

hence, by (II,3.17), a ¢ bA and a/b ¢ A.

Theorem (2.11). - Let A be a hoetherian ring and K the total
quotient ring of A. Then the following conditions are equivalent:
(1) A satisfies R, and Sz.
(ii) A satisfies Ry and 51 and, if g runs through the primes of

height 1, then the sequence A —K -——->ITKq/Aq is exact.

(iii) A is reduced and integrally closed in K.

Proof. By (2.2), A is reduced and satisfies RO and S1 under

all three conditions. The implication (i)=—= (ii) follows from (2.10)

and (2.6).

If ¢ ¢ K is integral over A, then its image cquq is
integral over Aq for any prime g. If g has height 1, then, by
R, and (2.6), Aq is normal; thus, cquq. Hence, if (ii) holds, then
c € A and (iii) holds. The implication (iii)= (i) follows from

(2.9) and (2.6).

Corollar 2.12) . -~ Let A Dbe a noetherian domain. Then the
following conditions are equivalent:
(i) A 1is normal.
(ii) For all height 1 primes p, Ap is reqgular and the essential
primes of each nonzero element have height 1.
(iii) For all height 1 primes P Ap is a discrete valuation ring

and A = nAp as p runs through the height 1 primes.

Corollary (2.13) (Serre's criterion). - A locally noetherian

scheme X is normal if and only if it satisfies R, and S,.

Proof. The assertion follows from (2.11) and (2.9).
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Corollary (2.14). - Let Y be a Cohen-Macaulay scheme and X

a closed subscheme which is regularly immersed in Y. If X satis-

fies R then X is normal.

1’
Proof. The assertion follows from {(III,4.5) and (2.13).

Definition (2.15). - A domain A is said to be factorial (or

a unique factorization domain) if every element £ has the form Hfi
where the fi are irreducible elements and the (prime) ideals fiA
are uniquely determined by f£. A locally noetherian scheme is said

to be locallv factorial if the local ring of each point is factorial.

Proposition {(2.16). - Let A be a noetherian domain. Then &

is factorial if and only if every height 1 prime is principal.

Proof. Suppose A 1is factorial and let p be a prime of B&A.
If € = IIfi € p where the f.1 are irreducible elements, then fi €p

for some i Thus, if p has height 1, it follows that p = fiA'

Conversgely, let f be a nonzero element of A and {fiA}
the set of essential primes of fA having height 1. Choose integers

r, inductively as follows: Given ri""’ri—i’
i r r

i . .
integer such that jgi fjJ]f, Then u = f/IIfjJ € A and uA is

let r, be the largest

easily seen to have no essential primes of height 1. By Krull's
r

theorem (III,1.10), u 1is a unit and £ = u-lﬂfjjs 80, A is

factorial.

Remark (2.17)}. - It is easily seen that a factorial domain is

normal.

3. Divisors

Definition (3.1). - Let X be a locally noetherian scheme and

J(X) the set of reduced irreducible closed subschemes W of X of



- 137 -

codimension 1. A divisorial cycle (Weil divisor) is a formal sum

EZ:: n W in which the set of generic points of those W such that
WeJ (X) w

n, # 0 is locally finite. An element of J(X) is called a prime

divisorial cycle; a divisorial cycle is said to be positive if all

- . . 1
n, 2 03 the group of divisorial cycles is denoted 3 (x) .

Definition (3.2). - Let X be a ringed space. The sheaf of

meromorphic functions KX is defined as the sheaf associated to the

presheaf whose sections over an open set U are the elements of the

total quotient ring of I(u,oxx A (Cartier) divisor D is defined as a

. * * . . . *
global section of the sheaf KX/OX,(where,lf AX is a sheaf of rings, AX
denotes the (abelian) sheaf whose sections are the units of AX). The
group of divisors is denoted Div(X). For each f € F(X,KQ), let (f)

denote the image of f in Div(X).

Remark (3.3). - Let X be a ringed space. A divisor D is
represented by an open covering {Ua}‘ of X and local equations
B,O;‘(); two such collections
{Ua,fa} and {Vﬁ’gp} represent the same divisor if and only if there

*
N P(Ua’Kx) such that fa/fﬁ € P(UanU

exists a common refinement {WY} and elements h ¢ r(wy,o;) such

that, if WY ¢ U nv then fa = gﬁh on WY.

g’ Y

Remark (3.4).- Let X be a ringed space. A divisor D defines

an invertible sheaf OX(D), contained in KX: If {Ua,fa} represents

-1
D, then oX(D)IUOL = £ oXIUOL < IS(IUG.

Definition (3.5). - Let X be a ringed space. A divisor D

is said to be effective (positive) if any one of the following equi-

valent conditions holds:

(i) 1f {u_,f,} represents D, then the local equations £ are

sections of OX'
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(ii) o, ¢ OX(D) ¢ K.

(iii) Ox(-D) is a sheaf of ideals.

Remark (3.6). - Let X be a scheme and D an effective

divisor. Then there is an exact sequence
e ey
o] ~*—éOX( D) >Ox ——9OD (o}

and OD is the structure sheaf of a closed subscheme, denoted Supp(D),

{or, simply D}.

Definition (3.7). - Let X be a ringed space. The Picard

group of X, denoted Pic(X), is defined as the group of isomorphism

classes of invertible sheaves on X.

Remark (3.8). - Let X be a ringed space. It is easily seen
that Pic(X) = ﬁl(x,o;) {7] OI’ 5.4.7). Purthermore, the exact

sequence

*

0 -——QOX

* * *
—— Ky —>K, /0, —0

yvields an exact sequence
* : b : vi *
P(X,Kx)——-9D1V(X)———9P1c(x)——~?H (X,KX)

where 0(D) = OX(D). Hence if ﬁl(X,K§)= 0, then every invertible

sheaf comes from a divisor.

Suppose X is noetherian and satisfies S Let A be an

.-
affine coordinate ring of X. Then, by (2.2), all essential primes p

v

of A are minimal; so, by (II,4.7), the total quotient ring K of A

is artinian and, by (II,4.9), K= IK_  as X runs through all generic

X (o]
(s}

. - ; ' . . .
points of Spec{A). Thus, Ky n(lxo*)Kxo where, if X, 1is a generic
point of X, then K! is the constant sheaf of K on {x.} and

X5 X5 0]
ix : Spec(ox } —3X 1is the canonical immersion. Therefore,

o} ¢}

P(X,KX) = @K as X runs through the generic points of X and
xo o}

1 *

H (X,KX) = 0.
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Definition (3.9). - Let X be an R, locally noetherian

1 . :
scheme. Then the g¢ycle map, cyc : Div{X})—— 3(X}, is a homomorphism
i,

defined as follows: If W is a prime divisorial cycle, then, at the
generic point w of W, the local ring Ow is a discrete valuation ring by
(2.6); let Vi be the associated valuation. If D € Div{X), let

* ] »
£, € K, be a local equation of D at w and define vW(D) as vW(fw),
and cyc(D) as ZVW(D)W. A divisorial cycle is called locally

principal if it is of the form cyc(D).

Proposition (3.10). - Let X be a normal, locally noetherian
scheme and D a divisor. Then:
(i) D is effective if (and only if) cyc(D) is positive.
(ii) cyec is injective.

{iii) cyc is bijective if and only if X 1is locally factorial.

Proof. LLet x be a point of X and £ ¢ K: a local equation
of D at x. If cyc(D) = O, then, for each height 1 prime p of
A = Ox, f € Ap. So, by (2.12), f e A = nAp and D 1is effective. If
cyc(D) = 0, then both D and -D are effective; hence, f ¢ A* and

D = 0. Thus (i) and (ii) hold.

To prove (iii), let x be a point of X and p a height 1
prime of Ox’ Then p defines a prime divisorial cycle W. If
W = cyc{D) for some divisor D, let £ be a local equation of D at
X. Then, by (i) f ¢ O,- Let {qi}r be an irredundant primary
i=1
decomposition of fA (II,3.14). Since A is normal, each essential prime of

fA has height 1 by (2.12). By localization (II1,3.17), it follows

that r =1 and (f) = p. Hence, by {2.16), X is locally factorial.

Conversely, suppose X 1is locally factorial. Then, by (2.16),

a prime divisorial cycle W is "cut out" at each x ¢ X by some
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element fxe Ox' The fX are easily seen to define a divisor D

such that cyec(D) = W. By linearity, cyc is therefore surjective.

Lemma (3.11). - Let A be a noetherian local domain of
depth = 2. Let X = Spec(A), x be the closed point of X and
U=x- {x}. If U is locally factorial and Pic(U) = 0, then A is

factorial.

Proof. Since U is locally factorial, it is normal; so, by
Serre's criterion (2.13), it satisfies R1 and Sz; hence, since

depth(A) 2 2, X satisfies R and S

1 - By (2.13), A is normal.

Any height 1 prime p of A defines a prime divisorial cycle
W on X. Since U is locally factorial, W|U is locally principal
by (3.10). So, since Pic(U) = 0 and U is reduced, W|/U is the
divisor of a rational function f by (3.8). By (I11,3.15),
dim(A) 2 depth(A) Z 2. §$o, since f has no poles on U, £ has no
poles on X; hence, since A is normal, £ ¢ A by (2.12). Let {qi}x:_1
be an irredundant primary decomposition of fA. Since A is o
normal, each essential prime of fA has height 1 by (2.12). By

localization, it follows that r =1 and fA = p. Hence, by (2.16),

A is factorial.

Proposition (3.12). - Let X be a local ringed space and

QP! —3 F — F" —5 0

an exact sequence of locally free Ox-Modules of finite rank. Then
there exists a canonical isomorphism

max max

ATEXpr @ AMAXpn T, \MAXp

Proof. Choose an open cover {U } of X such that

R . _ .
F|Ua = F an ® G, where G, is a free an Module. The canonical
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max max max

. . . " ' ~
isomorphisms v_ : G _——F IUa and (ACTF IUQ)®(A G, ) A FIUa
yield an isomorphism
a : (AmaxF,)®(AmaxF,,)]U __)Amaxﬂv .
(o8 a [+ 4
It remains to show that u, and u[3 coincide on Uaﬂ UB'
on Uaﬂ UB’ we have Vo = vﬂo qu where wﬁa : Ga-———aG[3 is
the "projection parallel to F' " defined as follows: For each
, - R '
seqtlon s € P(Uaﬂ Up’Ga)’ wﬁa(s) S+tBa(s) with tﬁa(s) € F(UanUﬁ,F ).
= - ] ] 4
However, then u, uge det(zﬁq) where Zﬁa : F' @ Ma—w—aF ® Mﬁ is
, id t , _
given by ( po) . Thus, det(zﬁa) =id and u = ug on U UB'

0 id

Lemma (3.13) [7], Iv,1.7.7). - Let X be a quasi-compact,

quasi-separated scheme and U a guasi-compact open subset. Then, for
each quasi-coherent (OXlU)-Module F of finite type, there exists a

quasi-coherent OX-Module G of finite type such that G|U = P.

Theorem (3.14) (Auslander-Buchsbaum). - A regular local ring

A is factorial.

Proof. (Kaplansky). If the dimension r of A is zero, then

A is a field; if r = 1, then, by (2.6), A is principal, so factorial.
Assume r 2 2., Let X = Spec{Ad), x Dbe the closed point of X and
U=%X~ {x}. If y € U, then 0, is regular by (111,5.15 and 5.16) and
dim(Oy) < r3 hence, U may be assumed locally factorial by induction

on r. Since A is regqgular, by (III,4.12), depth(ad) = dim(A) > 2.

Let L be an invertible OU—Module. By (3.13), there exists a

coherent Ox-Module F such that F|U = L. Since A is regular,

gl.hd(d) = r by (III,5.11):; hence, there exists a resolution

h
O——aoxr—-—-«-a . —>0, ——F —50.
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It therefore follows from {(3.42) that L = OU Hence, Pic(U) = 03

so, by {(3.11), A 1is factorial.

Corollar 3.15). - Let X be a regular scheme and Y a closed
subscheme of pure codimension 1. Then Y is normal if (and only if)

Y satisfies Ri'

Proof. The assertion follows immediately from (2.13),(III,4.5)

and (III,4.12).

4. Stability

Lemma (4.1). - Let ¢ : A—B be a local homomorphism of
noetherian rings, k the residue field of A, and u : M—3N a
B-homomorphism of finite B-modules. Suppose N is a flat A-module.
Then the following conditions are equivalent:

(i) u is injective and C = coker{u) is A-flat.

(ii) u®tl M®,k —>N®, k is injective.

Proof. Assume (i). Then the sequence 0 —M 5N —c —0

is exact and yields the exact sequence

Tor’jf(c k) — M®, k -u—@-j-‘-—>N®Ak.

Since € is A-flat, u®l is injective.
Conversely, the exact sequence O~—3u{M) —N-—C —>0
yields the exact sequence
0 —Tor} (€,k) — u (M) @k —>N@yk.

Assume (ii). Then the natural surjection M@hk-——au(M)ghk is bi-
jectives; so, by the exact segquence, Tor?(c,k) = 0. Hence,by the

local criterion (v,3.2), C is flat over A.
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Since N and C are flat, it follows that u(M) is flat.
Let K = ker(u). Then the exact sequence, 0 —K — M — u(M) —> 0
yields the exact sequence

Q

u®i
0 —>K®Ak >M®Ak — u{M) ®Ak.

Since u®1 +is injective, thk = 0. Since ¢ 1is a local homomorphism

and ¢(m)K = K, it follows from Nakayama's lemma that K = O.

Proposition {4.2). - Let A, B be noetherian local rings, k

the residue field of A,¢ : A—B a local homomorphism, M a
finite A-module and N a finite B-module. Suppose N is a flat
A-module. Then

depthB(M®AN) = depthA(M) + depth (N@Ak)

B®Ak

Proof. By (III,3.15), we may assume M # O and N # O.

Suppose depthA(M) = 0 and depth (N@hk) = 0. Let m (resp. n)

B@hk
be the maximal ideal of A (resp. B). By (III,3.11), m ¢ AssA(M)
and, by (I11,3.11 and 3.16), n € AssB(Ngkk). By (11,3.2), there
exists an exact sequence O-—k —3M; so0, since N is A-flat, the

sequence 0 ——>N® k —>NQ,M is exact. Hence, n ¢ AssB(Nxhk) <

AssB(MGEN) and depth(M@AN) = 0.

Suppose depthA(M) > 0. Let x € m be M-regular, M' = M/xM,
N' = N/xN, A' = A/xA and B' = B/xB. Since N' = N@hA’, N' is
A'-flat; furthermore, N'®,,k = N®,k and M'®,,N' = (M®,N) /% (MR, N) .
By (III,3.120 and 3.16), depthA,(M') = depthA(M)—l and
depthB,(M'@k,N') = depthB(MgAN)-i. Thus, the formula follows by

induction.

Suppose depth (N@hk) >0, Let y en be (N@hk)—regular

B@hk
and N' = N/yN Then (4.1) implies that the sequence
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0—N Y3 N —N' —50

is exact and that N' is A-flat; it follows that y is (M@AN)-
2 = Nt =
regular. Since (N@kk)/y(N@%k) N'®,k and (M®AN)/Y(M®AN)

. . . . - _
M®,N', (I11,3.10) implies that depthB@Ak(N @Ak) depthB@Ak(N®Ak) 1

and depthB(MﬁhN') = depthB(Mka)~1. Thus the formula follows by

induction.
Proposition (4.3). - Let ¢ :+ A—>B be a local homomorphism

of noetherian rings. Suppose B is flat over A. Then gl.hd{(a} <

gl.hd(B).

Proof. We may assume g = gl.hd(B) is finite. Let M, N be
A B :
two A-modules. Clearly, Torq+1(M,N)8%B = Torq+1(MﬁhB,N8%B), which
is zero by hypothesis. By (v,1.6), B 1is faithfully flat over A;
so, by (V,1.4), Tor§+1(M,N) = 0. Hence, by (III,5.7 and 5.9),

gl.hd(a) € q.

Lemma (4.4). — Let 2 be a ring, A[T] the polynomial ring
in one variable and M an A[T]-module. Then proj.dimA[T](M) <

proj.dimA(M) + 1.
Proof. Set M[T] = MB%A[T] and consider the sequence
0—>M[T] —fom[T] -9 M —s0

where f{x®a) = x®Ta - Tx®a and g{x®a) = ax. Clearly, g is sur~-

jective and g o £ =0, If g(inxml) = 0, then

z xiGml = f(Exixml_l + Txigml_z + ... + Tlulxigﬂ)z so, the sequence

d+1

is exact in the middle. If ftzxi@ml} = 0, then x.®° "= 0 where

d
d 1is the largest integer such that xdemd # 0} hence, f is injective

and the sequence is exact.
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It follows from (III,5.2) that proj.dimA[T](M) <

proj.dimA[T](M[TI) + 1. Finally, since A[T] is flat, it follows

easily from the definition that proj.dimA[T](M[T]) < proj.dimA(M).

Theorem (4.5). - Let A be a regular ring. Then the poly~-

nomial ring A[Tl""'Tr] is regular.

Proof. By induction, we may assume r = 1; by (4.4),

gl.hd(A[T]) <€ gl.hd(A) + 1, so the assertion follows from (III,5.18).

Proposgition (4.6). - Let ¢ : A—3 B be a local homomorphism

of noetherian rings and M a finite B-module. Let m be the maxi~-
mal ideal of A, (xl,...,xr) an A-regular sequence of m and
I=xA+ ...+ x A. Then M is A~flat if (and only if}) M/IM is

(A/1)~flat and the sequence (xi,..., xr) is M-regular.

Proof. By (III,3 4), the homomorphisms
* *
(M/IM)[Tl,...Tr]-—a ng(M) and (A/I)[Tl,...,Tr]-——ong(A) are

*
bijectives hence, the canonical homomorphism (M/IM)@h/Igrg(A)* ng(M)

is bijective Therefore, M is A~-flat by the local criterion
{v,3.2).
Theorem (4.7). - Let A,B be noetherian local rings, k the

regidue field of A, and ¢ ¢+ A—B a local homovmorphism. Then
the following conditions are equivalent:
(i) A and B are regular and, if Xyse.esX, are regular para-

meters of A, then Yy = (p(xl),...,yr = ¢(xr) are regular

parameters of B.
(ii) B and ngk are regular and B is flat over A.
(iii) A and B&Ak are reqular and B is flat over A.

(iv) A and B®,k are regular and dim(B) = dim(a) + dim(B@hk).
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Proof. If r = dim(A), then, by (III,4.11) and (4.6), condition
(1iii) is equivalent to the condition
(iii*') A 1is regqular, and if Xyre..,x  are regular parameters of
A, then y, = <p(x1),,..,yr = p(xr) form a B-regular sequence

and B/(le + ...+ yrB) is regular.

Now (i) and (iv) are equivalent by (III,4.10); furthermore,
(iii) implies (iv) by (V,2.11) and (i) implies (iii') by (III,4.11
and 4.10). Hence, (i), (iii) and (iv) are equivalent. Clearly, (i)
and (iii) together imply (ii) and {ii) implies (iii) by (4.3) and

(I11,5.11 and 5.15).

Theorem (4.8). - Let X,Y be locally noetherian schemes and

f : X—>»Y a faithfully flat morphism. Then:

(i) If X wsatisfies R (resp. Sk), then Y satisfies R (resp. Sk).

(ii) Suppose that, for each y € f£(X), the scheme f_i(y) satisfies
R (resp. Sk)' If Y satisfies Ry (resp. Sk), then X

satisfies R, (resp. Sk).

Proof. To prove (i), let y be a point of Y and x a
generic point of f_i(y). Then, dim(Ox@b k(y)) = 03 so, by (v,2.11),
dim(Ox) = dim(Oy). However, if Ox is regular, then, by (4.3), OY
is regular; thus,if X satisfies Rk’ then Y satisfies Rk'
Furthermore, by (III,3.15), depth(oxeb k(y)) = 0; so, by (4.2),

depth(Ox) = depth(Oy): thus, if X satisfies S then Y satisfies

X’
Sk.
To prove (ii), let x be a point of X and y = f(x). Then
it suffices to show that, if dim(ox) < k, then ox is regular
(resp. that depth(0 ) > inf{k,dim(ox)}). Since f is flat, by
(v,2.11), dim(Ox) = dim(Oy) + dim(oxxb k(y)) (resp. by (4.2),

Yy
depth(Ox) = depth(oy) + depth(oxxb k{(y)))s hence, if dim(Ox) < k,
y
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then, a fortiori, dim(oy) < k and dim(Oxxb k{y)) € k, and, by

hypothesis, Oy and 0.8, k{y) are regular. So, by (4.7), Ox is

Y
regular; thus, X satisfies Rk‘ Similarly, depth(ox) >

inf{k,dim(oy)} + inf{k,dim(ox@b k(y)} 2 inf{k,dim(0_)}; thus, X
y

satigfies Sk.

Theorem (4.9). - Let X,Y be locally noetherian schemes and

f : X—>Y a surjective, smooth morphism. Then X satisfies Rk
(resp. Sk) if and only if Y satisfies R, (resp. Sk). Consequently,
X 1is generically reduced (resp. without embedded components, re-

duced, regular, Cohen-Macaulay, normal) if and only if Y is.

Proof. Since £ is faithfully flat, the assertion follows

easily from (4.8), (4.5), (III1,4.12), {2.2) and (2.13).

5. Differential properties

Theorem (5.1). -~ Let S be a locally noetherian scheme, X,Y
two schemes locally of finite type over S and £ : X—=Y an

S-morphism. Suppose f is smooth at x ¢ X. Then:

(i) At x, the sequence O-——9f*Q$/ —al ——~?Q§ —>0 is exact

s X/ /Y

and split.

(ii) at x, ot

X/Y is free of rank n = dlmx(f).

Proof. Since all properties are local on X, we may assume f

is a composition Xa~§Laga§-li+Y where g is étale. By (Vvi,1.19),
the sequence 0*——5p*91 ———991 ,91 0 exact and split.

¥/s Ag/s //\{‘[/Y

Applying g*, we obtain the split, exact sequence

0O -——-a»g*p*Q;/S—> g*Qin —)g*an ————— O
Ay/s ALY
. ‘ 1 ~ 1
However, g*p*Q;/S = f*Qé/S, and, since g is étale, g*e  —Za0

n X/S
AAY/S
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* ~ ‘
and g Qi -———>Ql by (Vi,4.9)3 whence (i). Finally, it follows

AY/Y x/¥
1 .
from (VI,1.4) that QX/Y is free of rank n.
Proposition (5.2). - Let S be a locally noetherian scheme,

X,Y¥Y two schemes locally of finite type over § and g : X—Y an

S-morphism. Suppose X and Y are smooth over S. Then g |is

. R . &1 i
étale at x ¢ X if (and only if) the canonical map g Qy/g-——aﬂx/s

is an isomorphism at x.

Proof. The conditions are local, so we may assume that X and

1 1
/s 9% /s

By (vI,1.6)}, Qi/Y = 03 hence, by (vI,3.3), g is unramified at x.

Y are affine and that the map g*Q is an isomorphism.
Thus, it remains to prove g is flat., Let s be the image of x
in S8 and %k = k{(s). By (VI,4.8), we may assume S = Spec{k) and
that X and Y are algebraic k-schemes. By (V,5.5), g is flat on
an open sets hence, the closed points of an algebraic scheme being
dense (II1,2.8), we may assume x is closed. Since X is regular,
X and Y are regular by (4.8)., Since g is quasi-finite, it
suffices, by (V,3.6) to show that dim(ox) = dim(og(x)). Since x
is closed, it follows from (III,2.6) that dimx(x/s) = dim(ox) and
dimg(x)(Y/s) = dim(og(x)). The contention now follows from (5.1, (ii))

and the hypothesis.

Theorem (5.3). - Let S be a locally noetherian scheme,
X,Y two schemes locally of finite type over S and f : X——Y an
S-morphism locally of finite type. Let x be a point of X and
y = £(x). Suppose Y is smooth over & at y. Then £ is smooth
of x if and only if the following conditions hold:

(a) At x, X is smooth over S.

1 1

(b) At x, the sequence O——~>f*9§/ —_3Q ——e»QX/Y-——éo is exact.

S X/s
1 . .
(c) At x, QX/Y is free of rank n = dlmx(f).
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Proof. The necessity follows from (1.7) and (5.1). Conversely,

take gl,x""’gn,xe

of (Q;/Y)x. Since the conditions are local, we may assume that the

0x such that dgi,x""’dgn,x form a basis

g extend to global sections 9; of X. The 95 define a

i,x
morphism g such that the following diagram commutes.

g n
x ——9 LAl

Y

It remains to show that g is étale. Consider the exact sequence

O———ap*Q;/S———bﬂl > 91 > O3 applying g*, we obtain the

AY/S AG/Y

diagram

1

1 1
*{} —_— ki
Y/S > g g4

° g*p*Q n X1l
A Y/S //—'\Y/Y

> 0

(84 8

* 1

0o —— £*q — 5ol o0

Y/s /S 20

X/Y

By congtruction, P 1is an isomorphism; hence, by the five lemma, o

is an isomorphism and g is étale by (5.2).

Definition (5.4). - Let f : X—>Y be a morphism of schemes.

The tangent space of X/Y at x ¢ X, denoted TX/Y(x), is defined

, 1 1 =
as the k(x)-vector space Homk(x)(Qx/Y(x),k(x)), (where QX/Y(x) =
1
QX/Y®O k(x)).
X
Corollar 5.5). - Let S be a locally noetherian scheme,

X,Y schemes locally of finite type over S and f : X—>Y an
S-morphism, Let x be a point of X and

y = £(x). Suppose X (resp. Y) is smooth over S at x (resp. y).
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Then f is smooth at x if and only if Tx(f) :
TX/S(X)-—_’TY/S(Y)Gk(y)k(X) is surjective. 1In particular, if x
is rational over k(y), £ is smooth at x if and only if

df(x) : TX/S(x)-——aTY/S(y) is surjective.

Proof. By (VI,1.6), the sequence

x 1 1 1

E Oy s 7 O s T2 )y — 0
. . . . 1
is exact. Assume Tx(f) is surjective. By (5.1), QX/S and
f*Q;/S are free at x. So it follows from (IV,3.2) and Nakayama's

lemma that the sequence

1 1 * 1
O-——;Homcx(Qx/Y,Ox)——>Hom:x(9x/s,ox)——>Hom:x(f QY/S,OX)——90

is exact at x. It follows that, at =x, the sequence splits and

1 . . .
Hom:x(QX/Y’OX) is free; hence, we have the commutative diagram
with exact rows

1 1 1
* > > —> 0
% /s “%/s %4
« B Y
O-———*(f*ﬂ1 ) ———+(91 )V —s (91 VY ——>0
Y/5 X/S Y/X

v o _ = _ s
where F’ = Hom:x(r,ox) for any locally free OX Module of finite

rank.
Then, at x, « and $ are isomorphisms, so y 1is an iso-
. . 1 . * 1 1
morphism by the five lemmas hence, QX/Y is free and f QY/g—é QX/S

is injective. Hence, by (5.3), £ is smooth at x. The converse is

similar.

Lemma (5.6). - Let S Dbe a locally noetherian scheme, X an
S-scheme locally of finite type, x a point of X and gyreer9y

global sections of OX' Suppose X is smooth over S at x. Then
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the following conditions are equivalent:

(i) gl,...,gn define an S-morphism g: X-—ﬁ»ﬁg which is étale at x.
. . 1

(ii) dgi,...,dgn form a basis of QX/S at x.
cas \ 1

(iii) dgi(x)....,dgn(x) form a basis of QX/S(x).

Proof. Note that the map g*Qin—~——-9Qi/S is an isomorphism at
s/s
x if and only if (ii) (or, equivalently, (iii)) holds and apply (5.2).
Theorem (5.7). - Let 8 be & locally noetherian scheme, X an
S-scheme locally of finite type, Y a closed S-subscheme, and J its
sheaf of ideals. Let x be a point of Y and gqreee19y glckal
sections of OX’ Suppose X 1is smooth over S8 at x. Then the
following conditions are egquivalent:
(1) There exists an open neighborhood Xi of x such that
9ys---+9, define an étale morphism g : Xi———aéﬁg and
gl,...,gp generate J on Xi; i.e., Y1 =Y N X1 is the fiber

over a linear subscheme Aa§~p of 4&;.

(ii) (a) Y is smooth over §$§ at x.

{b) 9g,x7""" ,gp'xé J.-
. 1
{c) dgi(x),...,dgn(x) form a basis of QX/S(x).
. i
(d) dgp+1(x),...,dgn(x) form a basis of QY/s(x).

(iid) gi,x""’gp,x generate J and dgl(x),...,dgn(x) form a basis

1
of Qx/s(x).

{iv) Y is smooth over S at x, form a minimal set

gi'x,oo-'gp'x
of generators of Jx and dgp+1(x),...,dgn(x) form a basis of

1
QY/S {x).

Furthermore, if these conditions hold, then, at x, the

seguence

1

2
(5.7.1) 0 —>J/J ——->QX/S

1
®OX0Y 9y g0
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is exact and composed of free OY—Modules with bases induced by

{91.---,9p} ’ {dgl.---.dgn} and {dgp+1!°"ldgn} .

Proof. Assume (i). Since g is étale, Y1 is étale over
AAg_p by (VI,4.7). Thus Y is smooth over S at x with relative
dimension n-p. By (5.6), dgi,...,dgn form a basis Q;/S at x

and dgp+1,...,dgn form a basis of 91 at x3 so, (ii) and (iii)

Y/S
hold. It follows that gl,...,gp are linearly independent elements

of J/J2 at x3 since they generate, they are a basis. Therefore,

(iv) holds and (5.7.1) is an exact sequence of free OY-Modules at x.

Assume (ii) and let X, be an open neighborhood of x on

1

which gi,...,gp generate J. Consider the commutative diagram

Ye—=> yre > X

h h' g
¥
n- n
AS p‘_——i zﬁ,s
where Y' = g_l(AAg_p). By (5.6), g and h are étale and, by
(vi,3.5), h' is unramified. Hence, by (VI,4.7), i is étale.
However, by (VI,5.6),the closed immersion i is open. Therefore

Y =Y and (i) holds.

Assume (iii) and let X, be an open neighborhood of x on

1
which gi,....gp generate J and dgi,...,dgn form a basis of
1 .
QX/S' Then (i) holds by (5.6).

Finally, the implication (iv)=3 (i) follows from (5.3) and the

implication (i)=(ii) of the following theorem.

Theorem (5.8). - Let S be a locally noetherian scheme, X

an S-scheme locally of finite type, Y a closed subscheme of X, J
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its sheaf of ideals, x a point of ¥ and n = dimx(X/S). Suppose
X 1is smooth over S at x. Then the following assertions are
equivalent:

(i) Y is smooth over S§ at x and dimx(Y/S) = n-p.

(ii) There exists an open neighborhood X, of x and an étale

1
morphism g : Xl“_94a2 such that Xin Y = g—i(ﬁﬁg_p).
(iii) There exist generators gl’x....,gp’xe Jx such that

(x).

dgl(x),...,dgp(x) are linearly independent in Q;/S
—>0 1is an exact sequence

®. o0,—s0l

. 2
(iv) At x, 0—» J/J -——>QX/S 0 v /s

of free OY-Modules of ranks p,n, and n-p.

Proof. To prove the implication (i)=>(ii), note that, by (5.1),

1 1
Q and QY/S

X/S are free at x with ranks n and n-p. Take

gp+1nﬂ""gn,xe Oy such that dgp+1(x),...,dgn(x) form a basis of

1
QY/S(x). By (VI,1.8), the sequence

2 1
J/T—> QX /s® 0y >0y /s 0
is exact, so extend dgp+1(x),...,dgn(x) to a basis dgi(x),...,dgn(x)
1 . . . . .
of QX/S(x) with gl,x""’gp,xe I Then it follows from (ii)=p(1i)

of (5.7) that (ii) holds.

The implications(ii)=(i), (iii), (iv) follow directly from
(5.7); the implications(iii) ==(i), (iv) follow from (5.7) if we

extend dgl(x),...,dgp(x) to a basis of Q;/S(x).

A i cos i
ssume (iv) and take 99,%* ,gp <€ Ty whose residue classes

are linearly independent in Jx/Ji. By Nakayama's lemma, the 9, x
14
generate I and the exactness of (5.7.1) implies that

dgl(x),...,dgp(x) are linearly independent. Hence, (iii) holds.

Corollar 5.9). - Let S Dbe a locally noetherian scheme, X

an S-scheme locally of finite type, Y a closed subscheme of X, J
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its sheaf of ideals, x a point of Y, n = dimx(X/S), 91....,gp

sections of J over a neighborhood of x. Suppose X and Y are
smooth at =x. Then the following conditions are equivalent:
(i) P = dimx(X/S)-dimx(Y/S) and dgi(x),...,dgp(x) are linearly
. . 1
independent in QX/S(x).

(ii) gl,x""’gp,x dgenerate Jx and dgi(x),..,,dgp(x) are linearly

. . 1
independent in QX/S(x).
s as s s 2
(iii) gi,...,gp induce a basis of Jx/Ux.

(iv) 9y yree09 form a minimal set of generators of Jx'
?

P,x
(v) There exist sections gp+1,...,gn of OX over some open

neighborhood X of x which, together with gqreees9

1
define an étale morphism g : Xf———%ﬂg such that

pn
_ ~1 ,n-p

Proof. Assertions (iii), and (iv) are equivalent by Nakayama's

lemma; (i), (ii), (iii) and (v), by (5.7).

Corollar 5.10). - Let S be a locally noetherian scheme,
X an S-scheme locally of finite type and Y a hypersurface defined
by a global section g of OX' Assume X is smooth over S at

x € Y. Then Y is smooth over S at x if and only if dg(x) # O.

Proof. The necessity follows from (iv) = (ii) of (5.9); the

sufficiency, from (iii)==(i) of (5.8).

Corollary (5.11). - Let S be a locally noetherian scheme
and Y an S-scheme locally of finite type over S. Consider a

cartesian diagram

Yt —— Y

| & ]

St — 8

in which 8'——S is flat, Let x' be a point of ¥' and x ¢ Y,
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s' € 8', s ¢ 8§ its images. Then Y is smooth over 8 at x Aif
and only if ¥' is smooth over S' at x'. In particular, if
St'—-38 1is faithfully flat, then Y is smooth over § if and only

if ¥' is smooth over St'.

Proof. We may assume that S and Y are affine and that

Y—>S is of finite type. Then there exists a closed immersion
Y- X =;Ags let Yyte——>X! =,Ag, be its base extension and let J

and J' be the defining sheaves of ideals. Consider the sequences

2 1 1
(5.9.1) 0 —J/3 —->QX/S®OX0Y——->QY/S-——>0
2 1 1
L T
(5.9.2) 0 —J' /I —— Qx'/s'@’ox,oy'”—_’ Qy1 g0

Since, by (Vv,1.6), Oé————>os, is faithfully flat, by (VI,4.10) and
{vi,1.18), (5.9.1) 1is exact if and only if (5.9.2) is exact. Thus,
the assertion follows from {(iv)& (i) of (5.8) and the following

lemma.

Lemma (5.12). - Let ¢ : A—>B be a local homomorphism of
noetherian rings and M a finite A-module. Suppose B is flat over

A. Then M is free over A if (and only if) M&AB is free over B.

Proof. The assertion follows immediately from (V,1.5,(iv))

and (II1,5.8).

Theorem (5.13). - Let S be a locally noetherian scheme, X
a scheme locally of finite type over S and Y a closed S-subscheme
of X. Suppose Y is smooth over S5 at x. Then X is smooth

over $§ at x if and only if Y 1is regularly immersed in X at x.

Proof., If X is smooth over S at x, then, by (5.8), there

exists an open neighborhood X, of x in X and an étale morphism

1

g+ X—> /Ag such that Y = ¥nX,= g1 (A’S“'P). Since /Ag‘P is
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regularly immersed in AAg and since g is flat, it follows that Y

is regularly immersed in X at x.

Conversely, if Y 1is regularly immersed in X at x, let

(g seassg ) be an O_-regular sequence which generates the ideal
1,x PX x

Jx of ¥ at x and let gp+1’x,.°.,gn.x be elements of O

X, X
whose images in OY x define an étale morphism Y-—%uﬂg-p. Since
14
the question is local, we may assume the 9; x extend to global
?

sections of X. Then they define a map g:X *142 = X', and, in view of
(VI,4.6), it remains to show that g is étale at x. The fiber of
g at x is identical to the fiber of g|Y at =xj; thus, g is un-

ramified at =x. Applying (4.6) to A =0 , M =B = Ox x and

x',g(x) ,
I = Jx’ we conclude that g is flat at x.

Theorem (5.14 Jacobian criterion). -~ Let S be an noetherian
affine scheme with ring A, Y a closed subscheme of X =A@§ and x

a point of Y. Let I = gR + ... 4 gNR be the ideal in A[Tl,”ﬂTnlzR

5(91:»---9N)

defining Y and a(Tl.-‘-rTn)(X)

Cg_
gﬁi(x), (called the Jacobian matrix). The following conditions are

the matrix whose (i,j)th entry is

equivalent:
{i) Y is smooth over S at x and dimx(Y/S) = n-p.

(ii) There exists a re-indexing of CPERRRI- such that Iy yre09
»

0(91,-.-,9 )
generate I and rank —Po(x) | = p.

Psx

a(Tl,...,Tn)

(iii) ¥ is flat over § at x, dimx(Y/S) = n-p and

a(gls-o~ngN)
rank [m(x) :l = p.]

Furthermore, if Y 1is smooth at x and dimx(Y/S) = n-p.

then PR | I generate if and only if
» X x

€
PsX

a(gi,...,g )
—— TP -
rank (T, -0, ) (x) 1= p-
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Proof. Assume (i) and, by (5.8), re-index the gqse--19y SO

. 2
that 91""’gp yields a base of Ix/Ix' By (5.9), gi,x""’gp,x
generate Ix and dgi(x),...,dgp(x) are linearly independent.

Assertion (ii) now results from the following lemma.

Lemma (5.15). - Let A be a ring, x a point of AAZ and

gi,...,gpe A[Ti""'Tn]‘ Then dgl(x),...,dgn(x) are linearly

a(gl,...,g )
independent if and only if rank 5T——-~———E—{x) = p.

Ti,...,Tn)

og.,
Progof. Since dgi(x) =§Z'5F£(x)de(x) and the de(x) are
3

linearly independent, the assertion follows from the definition rank.

Assume (ii) of (5.14). Then (5.15) implies that
dgi(x),...,dgp(x) are linearly independent; so, by (5.8), it

follows that (i) holds.

Trivially, (iii) follows from (i) and (ii) together;it remains

to prove that (ii) follows from (iii). By re-indexing gyreoe sy

a(gl,...,g )
R S o

we may assume rank x
Y O(Ti....,Tp)(

{J = p. Let Y¥Y' be the subscheme

defined by the ideal giR 4+ ... + ng By {ii)==(i), Y' is smooth
at x. Since Y is flat over S, by (1.9), we may assume

8 = Spec(k(s})) where s is the image of x in S. Then Y' |is
reduced by (4.9) and by (5.8) dimx(Y'/S) = n-p. Since Y is a
closed subscheme of Y' and dimx(Y/S) = n-p, it follows that Y = Y
near x, proving (ii) and necessity in the last assertion. Conversely,

in the last assertion, if 91""’9p generate, then we may take

a(gi,...,g )

N = ps thus, rank 6(T1""'Tn)(X) =p by (i)=>(ii).

Proposition (5.16). - Let S be a locally noetherian scheme,

X,Y two S-schemes locally of finite type, g : X—Y an S-morphism,
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x a point of X and y = g(x). Assume either of the following two

conditions:

{a) dimx(X/S) = dimy(Y/S), X is flat over 8 at x and Y is
smooth over S at x.

(b) ¥ is regular at y and dim(Ox) = dim(Oy).

Then the following conditions are equivalent:

(i) g is étale at x.

1 1
- * . . .
(ii) ¢ QY/S———+QX/S is an isomorphism at x.
s s 1 1
- . . .
(iii) g QY/§_—9QY/S is surjective at x.

Proof. The implication {(i)==)(ii) was proved in (VI,4.9) and

(ii)==}(iii) is trivial. Assume (iii). By (VI,1.86) and (VvI,3.3),

it follows that g is unramified and it remains to prove that g is
flat. Under assumption (a), X and Y are flat over S at x3 so,
by (VI,4.8), we may assume S = Spec(k(s)) where s is the image
of x in S. Then, by (4.9), Oy is regular. Since by (V,5.5), g
is flat on an open set and since by (III,2.8), the closed points of
X are dense, we may assume x (and, therefore y) is closed. There~

fore, dim(Ox) = dimx(X/S) and dim(oy) = dimy(Y/S); 80, it suffices

to prove that g is flat at x under assumption (b).

By (vI,6.12), o, is a quotient of a local, étale extension B
of Oy' Since Oy is regular of dimension n = dim(Oy), it follows
from (V,2.11) and (4.9) that B is regular of dimension n. There-

fore, since dim(B) = dim(ox), it follows that B = OX.

6. Algebraic schemes

Proposition {6.1). - Let k be a field, X an algebraic

k-scheme, x a closed point of X, n = dimx(X/k) and 9yse--09,

global sections of O Then the following conditions are equivalent:

-
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(1) 9ysee-09, define a morphism g : X-——yﬂi which is étale at x.
. . \ 1
(ii) dgi,...,dgn form a basis of QX/k at x.

s 1
(iii) dgl,...,dgn generate QX/k at x.

If, in addition, k(x) 1is a separable extension of Xk and

gl,x""’gn,xe m then (i), (ii), and (iii) are equivalent to:

(iv) generate m .

gi,x""'gn,x

Proof. The equivalence of (i), (ii), and (iii) results from

{5.16). Under the additional hypotheses, by (VI,3.4), Qi(x)/k= O3
2 1 .
so, the sequence mx/mx—_——5Qox/kgkk(X}—__5o is exact by (VI,1.8);

thus (iii) follows from (iv).

Conversely, assume (i), (ii) and the additional hypotheses.
Then, by definition, Spec(k(x)) and X are smooth over k at xj

2 1 ,
so by (5.8), the sequence O-*émx/hx-———§ﬂo /k@kk(x)-———éo is

x
exacts whence, (iv).

Corollar 6.2). - Let X Dbe an algebraic k-~scheme and x a
closed point of X. Suppose X is smooth over k at x. Then 0x

is regular. Conversely, if k(x) is a separable extension of k

and 0x is regular, then X is smooth over k at x.

Proof. The first assertion follows from (4.9). Conversely,
applied to a regular system of parameters gi’x,....gn,xs M. . {6.1)

implies the assertion.

Proposition (6.3). - ILet X be an algebraic k-scheme. If
X is smooth over %k, then X is regular. Conversely, if X is

regular and k 1is perfect, then X is smooth over k.

Proof. The first assertion follows from (4.9). Conversely,

if k is perfect and X is regular, the open set U on which X
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is smooth contains all closed points by (6.2}; hence, by (111,2.8},

U = X.

Theorem (6.4). - Let k be a field, X an algebraic k-scheme,
x a closed point of X and n = dimx(x/k). Then the following
conditions are equivalent:
(1) X 1is smooth over k at x.

.. 1 .
(ii) Qx/k is free of rank n at x.

(iii) Q;/k is generated by n elements at x.
(iv) There exists an open neighborhood U of x such that ngL
is regular for all field extensions L of k.

(iv') There exists an open neighborhood U of x and a perfect

extension k' of kX such that U@kk' is reqular.

Proof. The implication (i) == (ii) follows from (5.1);
(iii) = (i), from (6.1). If X is smooth over k at x, then there
exists an open neighborhood U of x on which X is smooth over
k; by (1.7}, ngL is smooth over L and by (4.9), U@&L is regular.
Thus, (i)= (iv). Finally, the implication (iv')=>(i) follows

from (6.3) and (5.11).

Proposition (6.5). - Let k be a field, K an artinian
local ring which is a localization of a k-algebra of finite type, m
the maximal ideal of K, and n = tr.deng/m. Then the following
conditions are equivalent:
(1) K is a finite separable field extension of a purely trans-
cendental extension of k.

.. 1 .
(ii) QK/k is a free K-module of rank n.

1 . N
(iid) QK/k is a K-module with n generators.

(iv) For all field extensions 1L of X, K@kL is reduced.
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{iv') There exists a perfect extension k' of k such that ngk'
is reduced.
Furthermore, K is a finite separable field extension of k(t1’°"’tn)

. . . 1
if and only if dti""'dtn form a basis of QK/k'

Proof. Consider K as the local ring of a generic point x
of an algebraic k-scheme X. Then, by (6.4), {(ii) and (iii) are

equivalent and (iii) implies (i) and (iv).

Assume K = k(ti""’tn”"’tr) is a finite separable
extension of k(ti""’tn) and let X = Spec(k[ti,...,tn,...,tr]).
Then t,,...,t ~ define a morphism X-——exﬁz which is étale at x
{(where Ox= K)3 so, by (VI,4.6) and (6.1), (i) implies (ii) and
necessity in the last assertion. It remains to prove that {(iv')

implies (ii) and sufficency in the last assertion.

Assume (iv'). Then, since every element of m is nilpotent
by (11,4.7) and since K@kk' igs reduced, K is a field. Let

ti""’tr be elements of K such that dti""'dtr form a basis

i 1 ~ i
of gK/k’ and let L k(tl""’tr)' Then QL/kQLK_M;QK/k;
so, by (vIi,1.6), Q;/L = 0. Therefore, by (VI,3.3), K is a finite

separable extension of L and thus r = n.

Let f € k[Ti""’Tr] be a nonzero polynomial of minimal

degree such that f(ti"”’tr) = Q. Then}j%%- (t)dti = 03 so, the

dti being linearly independent, 'gg—(t) =0 for 1 < i < r; hence,
i

of

deg(£f) being minimal, a7, - 0O for 1< i< r. If k has
i

characteristic O, it follows that f = O; hence, tl""’tr are

algebraically independent and r £ n.
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If k has characteristic p > O, then f = h(TE,...,Tﬁ). If
P14 pi,
= Xc,. cos B sy = .
£(T) c1)T1 T, let d(l) {{c(l) and
i i
g =zd @t £ ¢ k'gK; then gP =05 so, since k'K is
reduced, g = 0. If d(i) = ze(i),jfj where the fj are linearly

i

i
independent over k, then Ze . jtil e trr
’

= 0 for any J,
contradicting the minimality of deg(f)}. Hence, ti""'tr are

algebraically independent and r € n, completing the proof.

Corollar 6.6). - Let K be a finitely generated field
1 .
i = i >
extension of k and n = tr.deg.K. Then dlmK(QK/k) > n, with

equality if and only if K/k is separably generated.

. 1 1 . .
= < -
Proof. If dlmK(QK/k) r € n, then QK/k is a K-module with

n generators and, by (6.5) is free of rank n. Thus r = n.

Corollar 6.7) . ~ An algebraic k-scheme X is smooth if
and only if Q;/k is locally free and the local rings of the generic

points are separable field extensions of k.

Proof. The assertion results from (6.4), (6.5), and (II1I,2.8).



Chapter VIII ~ Curves

1. The Riemann-~Roch theorem

Definition (1.1). - Let %k be an artinian ring, X a proper

k-scheme and F a coherent sheaf on X. The Buler-Poincaré

characteristic of F, denoted x(F), is defined as the alternating
sum Z(-1)'h'(F) of the length h*(F) of the k-modules Hl(X,F).
If D is a divisor on X, then we often write x(D) (resp. h* (D))

in place of x(0,(D)) (resp. h'(0,(D))).

Proposition (1.2). - Let %k be an artinian ring, X a proper

curve over k and D ,...,Dr divisors on X. Then the Euler-

1

Poincaré characteristic x(nlD1 + ...+ nrDr) is a linear poly-

nomial in Dysee-sn with integer coefficients.

x

Proof. If r = O, the assertion is trivial. If r > 1, let
= - ¥ o = = 1 4 - 1
J ox( Dl)HOX,J J(Dl), F OX/J and G (OX/J)(Dl). Since
the sequences

O-—aJ(n1D1+...+nrDr)——>Ox(n1D1+...+nrDr)——>F(n1D1+...+nrDr)——>O

1 ] - -
0—J ((n1 1)D1+...+nrDr}—9OX((n1 1)D1+...+nrDr)—4G(n1Dl+...+nrDr)+0

are exact, and since dim(Supp(F)) = dim(Supp(G)) = O,
x(nlD1+ ce. + nrDr)-x((nl-l)D1+ ee. + nrDr)

is a constant. Therefore, the assertion follows by induction.

Defipition (1.3).-Let k be an artinian ring, X a proper
curve over k and D a divisor on X. Then the deqree of D is

defined as the leading coefficient of the polynomial x(nD).
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Theorem (1.4) (Riemann}. - Let %k be an artinian ring, X a

proper curve over k and D a divisor on X. Then

x(D) = deg(D) + x(OX) .

Proposition (1.5). - Let %k be an artinian ring, X a proper
curve over k and C, D two divisors on X. Then, deg(C-D) =

= deg(C)-deg(D).

Proof. By taking successively n =0 and m = O in the poly-
nomial X{mC-nD) = am~bn+c, it follows that a = deg(C) and

b = deg(D); by taking m = n, it follows that a-b = deg(C-D).

Proposition (1.6). - Let %k be an artinian ring, X a proper

normal curve over k and D a divisor on X. Then, deg(D) =
= zvx(D)degk(x) where vX(D) is the integer defined in (VII,3.9)

and degk(x) is the k-length of k(x).

Proof. By (ViI,2.6), (VIiI,3.10,{iii)) and (1.5), we may

assume cyc{D) = x. Since the sequence

0 ——a»ox ~——~>OX(D) k{x) o

is exact, X(D)-x(Ox) = degk(x)z hence, by (1.4), deg(D) = degk(x).

Remark {(1.7). - Let X be a curve, F a subsheaf of KX

such that F_ = K for all generic points x of X and G the
x5 X5 (0]

\ . C . : '
quotient KX/F. Then there exists an injection G —a_inclosed Gx

where G; is the OX—Module whose stalks are GX at x and O

elsewhere. Since there is an injection & G;———anGé and since & Gé
and G have the same stalks, there exists a canonical isomorphism
G== & G!.

X

Proposition (1.8). - Let X be an 8, noetherian curve,

1

K = P(X,KX) and F a subsheaf of Kx such that P = K for all
*0 %o
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generic points Xq of X. Then there exists an exact sequence

O-—)HO(X,F) —>K —® (Kx/Fx) — Hl(X,F) —s 0.

Proof. The assertion results from the exact sequence
O -
O-——)F-—)I&—) IS(/F —>0 because H (X,IS{/F) =@ Kx/Fx by (1.7)

and Hl(X,IS() =0 by (VII,3.8).

Remark (1.9). - Let Xk be an artinian ring, X an 51 curve
of finite type over k, K = P(X,Kx) and F a coherent subsheaf of
Keo It follows from (1.8) applied to F that H1(X,F)* may be

identified with the set J(F) of families 6 of maps éx’ one for

each closed point x of X, which satisfy the following four condi-
tions:

(a) éx: K—>k 1is a k-linear map.

{b) éx(Kx ) = 0 for all generic points X such that xo-——%——rx

o)
or such that Xq £ Supp(F) .

(e) o (F) =o0.

(@) z6_(f) 0O for each f ¢ K.
x X

A family o6 € J(F), for some F, is called a pseudo-differential.

The set J of all pseudo-differentials has a natural K-module
structure: If & € J and f € K, then (fé)x(g) = 6x(fg) for g € K.
It is easily seen that, if 6 € J(F), then £& € J(G) where

G, = {g « oxl fg e Fx}.

If F cF' ¢ K, and Supp(F) = Supp(F'), then, clearly,
J(F') ¢ J(F). If F' =F + ann(F), then J(F) ¢ J(F') and
Supp(F') = X. If Supp(F) = X, then, for each x € X, F contains a
non-zero-divisor fx of K; moreover, since Fx = Ox for almost
all x, almost all f  may be taken as 1. Then, the f;l define

a divisor D such that OX(D) ¢ F. Therefore, J = UJ(D) where

J(D) = J(OX(D)) and D runs through Div(X).
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Proposition (1.10). - Let %k be an artinian ring, X an S,

curve proper over k, K = F(X,KX) and J the K-module of pseudo-

differentials. Then, rankK(J) < 1.

Proof. Suppose 61,...,6r€ J are linearly independent over K.

Let D be a divisor such that 6 ére J{D}. Then, for any

1)"'}
ca O o 1 (o]

divisor €, J(b-C) > H (C)éi+ ee. + H (C)ér. Hence, h" (D-C) = rh (C).

Replacing ¢ by D-C yields hl(c) = rhO(D-C). Thus, by Riemann's

theorem (1.4),
~-{deg(D-C) + x(OX)] + hO(D-C) 2z rldeg(C) + x(0y) + hl(C)l

and so

(1.120.1) -deg (D) = (r-1)deg(c) + (r+1)x(ox) + (rz—l)ho(D—C).

Now, if we let deg(C)—® , we see that r < 1.

Proposition (1.11}. - Let k be a field, X a connected
normal curve prxoper over k and 6 a nonzero pseudo-differential.
Then there exists a unigue maximal divisor D such that o6 e J(D).

This divisor is denoted (0) and is called a canonical divisor.

Moreover, vx((é)) is the largest integer n such that

éx(t;nox) = 0 where t_ is a uniformizing parameter at x.

Proof. With r =1, (1.10.1) yields that, if there exists a
% ¢ J(D), then deg(D) < —2x(ox). However, it is easily seen that if
4 e J(D) and b ¢ J(D'), then 6 ¢ J(Max(D,D')); whence, the

assertion.

Remark (1.12). - Let k be an artinian ring and X an S1
curve of finite type over k. For each open set U of X, let JX(U)
(resp. wx(U)) be the set of pseudo-differentials & on the scheme-
theoretic closure of U (resp. such that éx(Ox) = 0 for all closed

points X € U). It is easily seen that the JX(U) (resp. wX(U)) form
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a sheaf, called the gsheaf of rational pseudo-differentials (resp.

sheaf of regular pseudo-differentials or canonical sheaf).

Proposition (1.13). - Let k be a field, X a connected normal
algebraic curve over k and & a nonzero pseudo-differential. Then
the map K—3J defined by £f#+—£fd induces an isomorphism

OX((é))——:Lawx.

Proof. For any closed point x € X, the following conditions
are clearly equivalent: f& ¢ w3 (fé)x(ox) = 03 6x(f0x)= 0; and

f e (OX(G))X. Surjectivity results from (1.10).

Remark (1.14). - Let k be a field and X a reduced algebraic
curve over k. It follows from (1.10) applied componentwise that we
may identify Jx with Kx and J with K. So, by (1.8), there

exists an exact sequence
1
O*——)I‘(X,wx) —3>J — & Jx/wx—) H (X,wx) — 0.
Now, for each closed point x ¢ X and each ¢ € J, let Resx(é) = éx(i).
Then Resx: J~-3k 1is k linear and ZResx(é) = Zéx(l) = Q3 further-

i é e = =
more, if x @ then Resx(é) 6x(1) 0. Hence,

Res = (Resx) : Hi(x,wx)———)ka Res is called the residue map of X.

Theorem (1.15 Roch). - Let k be a field, X a reduced
curve proper over k and F a coherent subsheaf of KX. Then the

map
1
Y o Ho(x,Hom(F,wX))————,H (x,F)*,

induced by Res, is an isomorphism.

Proof. Given & ¢ Hi(X,F)* = J(F), define (&) : F-—-?wx by

¢(5)x(f) = £ for all x ¢ X and f ¢ F ¢ Kxc K. ‘Then, for any

closed point € X, R p (6 £ = (fo 1) = &6 (f , ¥ oo =
ed poi Y esy(w( )y( )) ( )y( ) y( )3 so ®
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= id 1 . Finally, if u : F———emx, then, for £ ¢ Fx’
H(X,F)*

(@(W(U))x(f))x = (f‘i’(u))x =u(f) 3 so, ¢ o ¥ = idHom(F,wx)_

Proposition (1.16) (Rosenlicht). - Let k be a field and X

a reduced algebraic curve over k. Let Y be the normalization of

X and p : Y-——3X the canonical morphism. Then:

(1) The Ox—homomorphism P2 Pry—3 0y, defined by w(é)x= Z:: &

p(y)=x

is an injection.

(ii) The natural pairing (p*OY/OX)x(wx/p*wY)————ék is nonsingular.

(iii) o is coherent.

(iv) Let C = Ann(p*OY/OX), n_= dlmk(p*OY/C)x and d = dim, (p,0,/0.) -
Then, for all singular points x of X, dx+ 1< n < ZdX and

the equality n = 2dx holds if and only if Wy is free of

rank 1 at x.

Proof. Let x be a closed point of X, A = (p*OY)x, q the

radical of A, {yl,...,yn} = p—l(x) and A; = OY . For any integer
i

r>0,A/q" = IIAi/qrAi by (II,4.9); hence, given g ¢ A;, there exists
h € A such that h = g mod qrAi and h = O mod qrAj for j # i.
If & is a pseudo~differential on Y, there is an r such that
6y'(qrAi) =0 for all i. Therefore, if I is an ideal of A
wh;ch contains qr for some r, then cp(é)X(I) = 0 implies

6 (IA.) =0 for all i.
y; i

Generically, ¢ is a map of one-dimensional vector spaces by
(1.10). It now follows that ¢ is injective and that any pseudo-
differential o on X is the form ¢(8) for some pseudo~differential
6 on Y. Moreover, if ax(A) = 0, then éyi(Ai) =0 for all i;

so, axé(p*wY)x. Therefore, if B 1is any k-subspace of A and w(B)

is the set of pseudo~differentials « on X such that ax(B) = 0,
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then
(Pyy) , = @(A)
and the natural pairing gives rise to the injection

w(B) /w(A) —>(A/B) *.

Since m(Ox) = o and C_c O, it follows that to prove (ii) it

gsuffices to prove that dimk(w(cx}/m(A)) = dimk(A/Cx). However,

a = ¢(6) € ofc) if and only if 6y (c,a;) =0 for all i. Since
i

by (VII,Z-G),CxAi is principal and rank (JYi) =1,

K
Yi
i ) b = = di . )3 ii).

dim( {0 « Jy.l y.(CxAi) O}/wy.) dim(a;/C_A,)s whence (ii)

i i i
Assertion (iii) results immediately from (i) and (ii).
To prove (iv), note that, if x is singular, then k + Cxc Och;

whence, d. + 1 < n . For each i, let &, ¢ o generate A.w_.

x X i X i“x

Making a purely transcendental extension of the ground field, if

necessary, we may assume it is infinite; then, a suitable combination

& of the éi generates all Ao and Adé = wa. Let £ € A and

suppose f0 ¢ w(A). Then (Ad)(f) =0, so f € 0x by (ii). However,

Cx= ann(wx/m(A)) by (ii). Therefore, £ ¢ C-

The map £—»£6 defines an injection u : Ox/Cx———awx/w(A);
hence, n - d < d . If is a free O_-module of rank 1, then

X K X X X
necessarily 6 is a basis; so u is surjective and n - dx= dx'
Conversely, if this equality holds, then u is surjective and every
o€ o is of the form gé + B where g € O and p € w(A). However,

p = f6 for some £ ¢ Aj so, £ ¢ O and a = (g + £)6.

Remark {(1.17) - (i) Under the conditions of (1.16), suppose
X 1is integral and proper and let w = hi(ox) {resp. g = hi(oY)) be
the arithmetic (resp. geometric) genus of X. Then the exact sequence

o __.,ox _;p*oY-_g p*OY/OX —30 shows that

X =g + de.
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(ii) Let X be a reduced algebraic curve lying on a smooth
algebraic scheme P of pure dimension r. Then it follows from (1.16),

(1.15) and (I,2.1;2.3; and 4.6) that the sheaf 0y of regular

. . . r-1 r
pseudo-differentials is of the form Ext:P (OX’QP/k)° Moreover, by

(1,2.6),(111,4.5 and 4.12), and (VII,6.2) Wy is locally free of

rank 1 at x € X (or, equivalently, n = 2dx) if X is a complete

intersection in P locally at x.

In particular, Wy is invertible if X 1is a complete inter-

section in [P* (Rosenlicht) or if X 1lies on a smooth surface F

(Gorenstein-Samuel) 3§ further, if K is a canonical divisor on F

P
(i.e., Q;/k = OF(KF))’ then X.(X + KF) is a canonical divisor on
X (1,2.4).

2. Tate's definition of residues

Remark (2.1). - Let k be a ring, A a k-algebra and M, N
two A-modules. Then there is a natural left (resp. right) A-module
structure on Homk(M,N): If u e Homk(M,N), a €A and x ¢ M, then
(au) (x) = au(x) (resp. (ua)(x) = u(ax)). Let [A,Homk(M,N)] denote
the k-submodule of Hbmk(M,N) generated by all elements of the

form au-ua.

Proposition (2.2). - Let k be a ring, A a k-algebra and
0—N 25 E iaM —~—>0 an exact sequence of A-modules. If M is

k-projective, then there exists a canonical A-homomorphism
1
[ I QA/E———bH = Hbmk(M,N)/[A,Homk(M,N)]
such that e¢(dt) = j—1°(t0-0t) for any k-section o of p.

Proof. Define D, : A—H by Da(t) = j_lo(tc—ot); D, is

well-defined because po(to-ot) = t-t = 0. If o' is another
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k-section, let 7T = o' - o, Then p o 7

i

03 80,0 = j-lo T € Homk(M,N).

ff

Now, DU,(t)-Da(t) = j_lo(tc'-a't-ta+at) to—-ot € [A,Homk(M,N)].
Thus D = D, is independent of o. If t,t' ¢ A, then D(tt') =
- j'l(tt'o—tct’+tot'-0tt’) = tD(t*')+t'D(t). Thus, D is a k-derivation;

whence, the assertion.

Definition (2.3}). - Let k be a ring and A a k-algebra.

Then define SA as the set of all s ¢ A satisfying the following
two conditions:
{a) s is a non-zero~divisor.

(b} A/sA 1is projective of finite rank over k.

Lemma (2.4). - Let k be a ring and A a k-algebra. Then

SA is a multiplicative set.

Proof. Let r, s ¢ SA. Then, clearly, rs is a non-zero=-

divisor. Furthermore, the sequence
(2.4.1) 0 —A/sA —=3 A/rsA —3A/TA —30
is exact; hence, A/rsA is k-projective of finite rank.

Definition (2.5). -~ Let k be a ring, A a k-algebra,

1 . .
w € QA/k and s € S,- Then ResA/k(w/s) is defined as

tr(A/sA)/k(¢(w))where 9 is defined as in(2.2) with respect to
S

0 —3>A/sA >A/s2A —>A/sA 30,

Remark (2.6). - Let k be a ring and A a k-algebra. Then

(i) ResA/k(wjl) = O for any o ¢ Q;/k'

(ii) ResA/k(adt/s) = tr(A/SA)/k(snl(to~at)a) where a,t € A,s € SA

and ¢ 1is a k-section of A/szA-—-qA/sA.

Lemma (2.7). - Let %k be a ring, A a k-algebra and

u: A-—3A a k-linear map. Suppose u(rA)NrA = 0 and u(sd)nsA =0
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for r, s € SA' Then tr(A/rA)/k(ur) = tr(A/sA)/k(us) where

u, = u@id(A/tA).

Proof. By symmetry, we may replace s by rs. Then, since
(2.4.1) splits, the corresponding matrix M(us) has the form

*
(:ro); whence, the assertion.

Definition (2.8). - Let k be a ring. A a k-algebra

and u : A—3A a k-linear map such that u(sA)nsA = 0 for some

s € SA' Then the trace of u, denoted trA/k(u), is defined as the

element t?(A/sA)/k(us) € k where u = u®ldA/sA‘

Proposition (2.9). - Let k be a ring, A a k-algebra and

I : A—ssA a k-linear projection. Then for all a, t ¢ A,
_ -1
ResA/k(adt/s) = trA/k(s (mt-tma).

Proof. If R = ker{O), then A =R ® sR & szA, R = A/sA and

~

R ® sR = A/SZA; whence at' = idA- I induces a k-section o of
A/s2A4-9A/sA. Since IIt-tll = to'~0't, it follows that

trA/k(s-l(Ht—tH)a) = tr(A/sA)/k(s-l(tc—at)a) = ResA/k(adt/s).

Proposition (2.10}. - Let k be a ring and A a k-algebra

-1 . : 1
and K = SA A. Then ResA/k is a k~linear map from QK/k to k.

Proof. Let a, t € A and r, s € SA' Let I be a k-linear
projection A —3>rsA. Then r-lnr is a k-linear projection A-—>sA.
-1 -1
Hence, by (2.9), ResA/k(radt/rs) = trA/k(S r {(It-th)ra) and
-1, -1 -1
ResA/k(adt/s) = trA/k(s (r “HOr)t-t{(r “NOr))a). Therefore, by

(2.7), ResA/k(radt/rs) = ResA/k(adt/s); whence, the assertion.

Proposition_(2.11). - Let k be a ring and A a k-algebra.

Then ResA/k(ads/s) = tr(A/sAyk(a) for all a € A, s € SA' In

partlcular,'ResA/k(ds/S) = rankk(A/sA).lk.
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Proof. Let @1 ;: A——ssA be a k-linear projection and

gt = idA-H. Then Ot-tHd = to'-ot't, gles = O, trxr

a * .
= trA/k(a'a) and M(o'a) = (, 0); whence, the assertion.

A/k(s_i(so'-a's)a) =

Proposition (2.12). - Let k be a ring, A a k-algebra and

n
s € SA‘ Then ResA/k(ds/s }) =0 for n>1.

Proof., Decompose A into a k-direct sum A =T @& s

n

e s"a

where T =R@®@sR® ... & sn-ZR and let 1II be the projection

A———)SnA. If a=t + sn—lr + s is the decomposition of a € A,

then ufa) = s—n(Hs-sH)a = s'n(snr+sn+1b—sn+1b) = r; hence,
M = /o s o and tr, , (u) = O.
A/k
a0
o O 8]

3. Functorial properties of residues

Lemma (3.1). - Let k be a ring and ¢ : A—3A!

homomorphism. Let s ¢ S, and w € Qi/k’ let s' = p(s)
w! = ¢(w). Assume:
(a) s* is a non-zero-divisor in A!

{v) ¢ induces an isomorphism A/sZA-—:;aA'/s'zA'.

' [ 1y =
Then s' € SA' and ResA,/k(w /s1) ResA/k(w/s).

Proof. In the commutative diagram induced by o,

O-—>»A/sA -—-——>A/52A —s A/SA ——0

L

0‘—§A'/S’A'-—9A'/S'2A'—-)A'/S'A' —_0 s

the vertical maps are isomorphisms; whence, the assertion.

a k-algebra

and
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Proposition (3.2). - Let k be a ring, A a k-algebra, s ¢ SA

and Q a multiplicative set in A such that Spec(A/sA) ¢ Spec(Q_lA)-

1
Then Res {w/s) = Res _ {(w/s) for all w e Q .
A/k 0 1A/k A/k

Proof. Since localization is exact, s is a non-zero-divisor
. - - - - 2
in Q 1A and Q 1A/szQ 1A =Q 1(A/szA) = A/s"A; whence, the

assertion results from (3.1).

Proposition (3.3). - Let k be a ring and A a noetherian

k-algebra. Let s € SA and m an ideal contained in sA. If

A r B 1
A= }&E(A/m ), then Resz/k(w/s) = ResA/k(w/s) for all o e QA/k'

Proof., By (11,1.17), (3.1a) holds and by (II1,1.19), (3.1b)

holds; whence, the assertion.

Proposition (3.4). - Let k be a ring, {Ai} a finite family

of k-algebras and A = IA,, If s = Ns, where s € S and s.€ A,
i i A i i

. _ 1
and if w = Zwi where wie QAi/k’ then s;¢€ SAi and

ResA/k(w/s) = ZResAi/k(wi/si).

Proof. Since A/sA = nAi/siAi,it follows that s ¢ SA (if and)

only if s, € SA for each 1i. Choose splittings gy of
i

Ai/(si)zAi———>Ai/siAi3 then o = Hci is a splitting of A/52A-éA/sA.
By linearity of Res, we may assume o = adt. Let a = Ia, and

1
(w/s) =

t = . . . . .
ntl where al, tl «eAl Then Res

A/k
-1
= Is. L.-t.o, )= ..
trA/k( Si (Gxtl tlcl)al) EResAi/k(wi/sl)

Proposition (3.5). - Let k be a ring, A a noetherian
k-algebra of dimension 1 and X = Spec{A). If o ¢ Qi/k and s € SA’

then ResA/k(w/s) Resx(m/s) where Resx(w/s) = Resox/k(w/s).

- b
x closed

Proof. The sum is finite because, by (2.6(i)) and (2.10), whenever

s(x) # o, Resx(w/s) = 0. Let {xi} be the zeros of s, m = sA and
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A= ;im(A/mr). Then, by (VI,6.7) and (II,1.24), A= nbx . Therefore,
i
the assertion results from (3.3) and (3.4).

Proposition (3.6). - Let kX be a ring, A, k' two k-algebras
1
t = 1 [ —
and A Aekk . If s €8 and o € QA/k’ then s' =s®l € S

A
and ResA/k(w/s)en = ResA,/k,(wgn/s®1).

Al

Proof. Since At!'/s'A'= (A/sA)@kk', A'/s'A' is k' projective
of finite rank. Further, the exact sequence 0——>A»—59A-—9A/SA-—+>O
' .
is k-split; so, the sequence 0—sA' —= 3 A'—3A'/s'A' —> 0, obtained

by tensoring it with k', is exact.

Choose a k-splitting o of A/szA-——aA/sA; then o' = o®l is
a k-splitting of A'/(s')zA'———eA'/s'A'. We may assume o = adt.
-1
Then by (VI,6.5) ResA,/k(wen/s®1) = trA,/k,(s (ct-to)al) =

= trA/k(s-i(Ot—to)a)xn = ResA/k(w/s)®1.

Proposition (3.7 The trace formula). - Let k be a ring
and @ : A—»A' a homomorphism of k-algebras. Suppose A' is
projective of finite rank over A. Let TrA'/A be the homomorphism

1 1 1
. - (] *
1d91 GtrA,/A : QA/kekA -———>QA/k. If o € QA/kgkA » 8 €8,, and
aA/k

s!' = ¢(s), then s' € SA' and

ResA,/k(w/s') = ResA/k(TrA,/A(w)/s).

Proof. Clearly, s' 1is a non-zero-divisor in A'. Since A"
is a direct summand of AP, A'/s'A' is a direct summand of (A/sA)p:

hence, A'/s'A' is k-projective of finite rank.

Let T : A——sA be a k-linear projection . Then

I' = IQid,,: A'—>s'A' is a k-linear projection. Since TrA'/A is

linear, we may assume w = a'dt where a', t € A. Let
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P = s_l(nt-tn). Since trA'/A is A-linear, trA,/k((¢®idA,)a') =
= trA/k(trA,/A((¢®idA,)a)) = trA/k(¢(trA,/A(a'))). Therefore, by

(2.9), Res (atdt/s') = Res (tr (at)dt/s) =

A'/k

ReSA/k(TrA'/A

A/k” TA'/A

(a'dt) /s).

[

4. Residues on algebraic curves

Example (4.1). - Let k be a field, T an indeterminate, P(T)

a monic irreducible polynomial and d = deg(P). Let x(T)/s(T) =

(rm(T)/P(T)m) * ee. #(r, (T)/P(T)) + (£ (T)/s,(T)) be a rational

function such that deg(ri(T)) <d for i>0 and so(T) #Z 0 mod P(T)

d-1
a3-1T t ...t ag, then Resx(rdP/s) =a3.4

X eAﬁi = Spec(k[T]) is the closed point "cut out" by P.

If ri(T) = where

Proof. By (2.6), Resx(rodP/so)= 03 so, by (2.10), we may assume

r, =0. Let P = (T—bj) 3 where b, are the distinct roots of P

in a splitting field. Now, ri(T)/P(T)1 = Zhji(T) where hji(T) =

g.-1 q%
= (cji(T—bj) I+ ..-)/(T-bj) J, Then, (3.6), (3.5),(2.10),(2.11) and
g.-1
(2.12), Resx(rdT/s) = EResbj(cjid(T-bj)/(T:bj) Iy = chi;

whence the assertion.

Proposition (4.2). - Let k be a field, X, Y two S

1
algebraic curves over k, £ : X——>Y a covering mapyK = P(X.Kx),

L = I'(Y,KY). Suppose f is flat (e.g., X integral and Y normal)
and generically unramified. Then, for all w € Q;/k’

ZResX(w) = ZResy(Tr (w)).

K/L

Proof. We may assume Y = Spec(Oy) and X = Spec(A). Since f

. . < 1 1
is generically étale, by (VI,4.9), QK/k = QL/kgiK' Furthermore,
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S =8 is clearly the set of non-zero-divisors; so Ql = S—lﬂl
o) S 3 oy/k

and K = S—lA. Therefore, the assertion follows from (3.7) and (3.5).

Theorem (4.3) (Residue formula). - Let k ke a field, X a

connected normal curve, proper over k and K its function field.

Suppose K is separably generated over k. If w e Q;/k’ then

z -
X closed Resx(w) 0.

Proof. It follows from the hypothesis that there is a finite
separable morphism £ : X——7Fﬁ. Therefore, by (4.2), we may assume
X = Wi. Further, by (3.6) and (3.5), we may assume k is algebraically

closed.

Suppose w = adt where a ¢ k(t). By decomposing a into
partial fractions, using the linearity of Res and changing variables,
we may assume that a =t", n 2 0. However, " may have a pole only
at ® ; so, by (2.6), Resxku) =0 for x Aow. If u= 1/tn, then

0 = —du/un+2: so, by (2.12), Res (v) = 0.

Theorem (4.4). - Let k be a field and X a connected curve
smooth and proper over k. Then Qi/k = oy and the residue maps
coincide.

1
Proof. Let K = F(X,KX) and © € QK/k' For each f ¢ K and
x € X closed, let 6x(f) = Resx(fw). Then, by (2.10), éx: K—k

is a k-linear map and, by (4.3), Eéx(f) =0 for all f ¢ K.

Let x be a closed point. Since X/k is smooth, k(x)/k is
separable. So, there exists a ¢ k(x) such that trk(x)/k(a) # O.
Let b ¢ Ox have residue class a. If o = (u/txx)dtX where tx is

2 uniformizing parameter of 0x and u € O;, then, by (2.11),
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Resx(fw) #0 for f = bt ™ u ~. Therefore, by (2.6) ,0 ¢ Qox/k‘ Oxdtx
i ] <) =
if and only if x(Ox) 0.

m
Since w € Qé /k for almost all x, the elements txx, where
ble

m, = max(o,nx), define a divisor D such that & = (éx) € J(-D).
) . . 1 _

Therefore, since dlmK(J) =1 and dlmK(QK/k) =1, the map

o} ¢(w) = & defines an isomorphism Q;/k——:;wx' Finally,

Resx(¢(w)) = ¢(w)x(1) = Resx(w)-
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Notation

K, (x), K, (x3M), K*(g;M), H* (x3M) (M an A-module, x;¢ A): I,4.
gr¥ (M), gr;(M) (M a filtered A-module, g an ideal): II,1.4.
lim M, ((Mi,f§) a projective system): II,1.6.

N (N a filtered module): II,1.7.

rad{a) (A a ring)s: II,1.20.

Supp(F), Supp{M} (F a sheaf, M a module): II,2.1.

V{(J) (J a sheaf of ideals): II,2.5.

Ass(M), Ass(F) (M a module, F a Module): II,3.1.

Ann(x): II,3.1.

sy, S_ip (M an A-module, p a prime, S ¢ A): II,3.9.

Q(p) (p a prime ideal): I1I,3.14.

ZA(M), £Z(M) (M an A-module): II,4.1.

x{M,n): II,4.10.

Ax,  (x a polynomial) : II,4.11.

Q(M,n): II,4.11.

P(Mn): 11,4.13.

Pq(M,n): 11,4.14.

dim(X) , dimA(M), dim(M) (X a topological space, M an A-module): IIT,1.1.
a(m, s(M}s III,1.1.

tr.degkA (k a field, A a k-algebra): III,2.6.

depthI(M), depthA(M), depth(M) (M an A-module, I an ideal): IV,3.9, 3.11.
proj.dimA(M), inj.dimA(M) (M an A-module): III,5.1.

gl.hd{(A) (A a ring): III,5.3.

EY (E a locally free sheaf): IV,2.6.

yr(F) (F a Module): IV,4.2.

*
e : IV,5.2.
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codim(Y,X) (Y a closed subscheme of X): V,2.9.
Derk(A,M) (A a k~algebra, M an A-module): VI,1.1.
@, , .25, ) (A a k-algebra): VvI,1.3

A/](’ A/k g . pheda
uB/A/k’ VB/A/k (A a k-algebra, B an A-algebra): VI,1.5.
ﬁ(i) (i an immersion): VI,1.21.
42&/Y (X a Y-scheme) : VI,6.4.

tr, Tr: VI,6.5.

astr (X a flat cover of Y): VI,6.5.

X/Y
A"3Xp  (F a locally free sheaf): VI,6.5.

D (X a flat cover of ¥): VI,6.5.

X/Y
dimx(x/Y), dimx(f) (f a morphism from X to Y, x € X): VII,1.3.

v : VII,2.4.

J(X) (X a locally noetherian scheme): VII,3.1.

31(X) (X a locally noetherian scheme): VII,3.1.

Ky (X a ringed space): VII,3.2.

Div(X) (X a ringed space): VII,3.2.

OX(D) (X a ringed space, D a divisor): VII,3.4.

0D (D a divisor): VII,3.6.

Pic(X) (X a ringed space): VII,3.7.

cyc, vw(D) : VII,3.O.

TX/Y(X)’ Tx(f), df (x) (f a morphism from X to Y, x € X): VII,5.4.

6(91,.-.,qy)
ETE——-———E‘)(X)
1°°°°*"n

¢ VII,5.14.

hl(F), hl(D), x(F), x(D) (F a Module, D a divisor): VIII,1.1.
deg(D) (D a divisor): VIII,1.4.

degk(x) (k an artinian ring, x € X a curve over k): VIII,1.6.

J(F), éx: VIII,1.O.

JX (X an algebraic curve): VIII,1.14.
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Res: VIII,1.14.
C, n , d : VIII,1.16.
x’ T x
[a, Hbmk(M,N)] {A a k~algebra, M, N A-modules}): VIII,2.1.
Sp (A a ring): VIII,2.3.
ResA/k(w/s): Viii,2.5.

] - .
TrA'/A (A' an A-algebra): VIII,3.7.



Terminology

g-adic filtration: II,1.1.

Arithmetic genus: VIIT,1.17.

Artinian (ring, module): II,4.4.
Associated graded ring, module: II,1.4.
Associated prime: I1I,3.1.

Branch locus: VI,6.3.

Canonical divisor: VIII,1.11,
Cartan-Eilenberg resolution: IV,2.1.
Codimension: V,2.9.

Cohen~Macaulay module: III,4.1.
Complete intersection: III,4.4.
Composition series: II,4.1.

Conormal sheaf: VI,1.21.
Constructible: V,4.1.

Cover: VI,6.1.

Cycle map: VII,3.S8.

Degree: VIII,1.3.

Depth: II1,3.9 and 3.12,

k-derivation: VI,1.1.

Differential, 1-differential, differential pair: VI,1.3.
Dimension :III,1.1.

Discrete valuation ring: VII,2.4.

Discriminant: VI,6.5.

Divisor: VII,3.2.

Divisorial cycle: VII,3.1.

Effective divisor: VII,3.5.

Embedded component, prime, prime cycle: II,3.11.
Equidimensional: III,1.1.

Essential prime: II,3.1.

Etale morphism: VI,4.1.

Euler-Poincaré characteristic function: VIII,1.1.

Factorial domain: VII,2.15.

Faithful: v,1.



- 183 -

Faithfully flat: Vv,1.3, 2.1 and 2.5.
Filtration: II,1.1.
Flat: V,2.1 and 2.5.

Generically reduced: VII,2.2,
Generization: V,2.6.

Geometric genus: VIII,1.17.

Global homological dimension: III,5.4.
g-good filtration: II,1.11.

Graded ring, module: II,1.3.

Height: III,3.1.
Hilbert characteristic function: I1I1,4.10.

Hilbert-Samuel polynomial: II,4.14.

Ideal of definition: III,1.2.
Injective dimension: III,5.1.
Irredundant: II,3.13.

K&hler different: VI,6.4.

Koszul complex: I,4.1.

Length: II,4.1.
Locally factorial scheme: VII,2.15.
Locally principal divisorial cycle: VII,3.9.

Meromorphic functions: VII,3.2.

Minimal prime: II,3.11.

Nilradical: II,2.8.
Noetherian topological space: V,4.1.
Normal domain: VII,2.6.

Picard group: VII,3.7.
Polynomial morphism: VII,1.1.
Positive: VII,3.1.

p-primary: II,3.12.

Primary decomposition: I1I,3.13,

Prime cycles; II,3.11.

Prime divisorial cycle: VII,3.1.
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Projective dimension: III,5.1.
Projective limit: II,1.6.

Pseudo-differential: VIII,1.O.

Quasi-faithfully flat: V,2.5.
Quasi-finite: VI,2.1.
Quasi-flat: V,2.5.
M-quasi-regular: III,3.3.

Radicial morphism: VI,5.1.

Reduced: VI,3.2.

M-regular: III,3.1.

Regular immersion: III,4.4.

Regular local ring, regular parameters: III,4.6.
Relative dimension: VII,1.3

Residue map: VIII,1.14.

Saturation: I1I,3.16.

Scheme with property Rklsk): vIii,2.1.

Second fundamental form: I,3.

Separable polynomial: VI,6.11.

Separated: II,1.1.

Separated completion: II,1.7.

Sheaf of 1-differential forms: VI,1.21.

Sheaf of rational pseudo-differentials: VIII,1.12.
Smooth morphism: VII,1.1.

Spectral sequence of a composite functor: IV,2.2.

Support: II,2.1.

Tangent space: VII,5.4.
Trace: VI,6.5.

Uniformizing parameter: VII,2.4.

Unramified morphisms: VI,3.1.

Yoneda pairing: IV,1.1.



10.

11,

12.

13.
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